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ROCKET: ROBUST CONFIDENCE INTERVALS VIA KENDALL’S
TAU FOR TRANSELLIPTICAL GRAPHICAL MODELS1

BY RINA FOYGEL BARBER AND MLADEN KOLAR

University of Chicago

Understanding complex relationships between random variables is of
fundamental importance in high-dimensional statistics, with numerous ap-
plications in biological and social sciences. Undirected graphical models are
often used to represent dependencies between random variables, where an
edge between two random variables is drawn if they are conditionally depen-
dent given all the other measured variables. A large body of literature ex-
ists on methods that estimate the structure of an undirected graphical model,
however, little is known about the distributional properties of the estima-
tors beyond the Gaussian setting. In this paper, we focus on inference for
edge parameters in a high-dimensional transelliptical model, which general-
izes Gaussian and nonparanormal graphical models. We propose ROCKET, a
novel procedure for estimating parameters in the latent inverse covariance
matrix. We establish asymptotic normality of ROCKET in an ultra high-
dimensional setting under mild assumptions, without relying on oracle model
selection results. ROCKET requires the same number of samples that are
known to be necessary for obtaining a

?
n consistent estimator of an element

in the precision matrix under a Gaussian model. Hence, it is an optimal esti-
mator under a much larger family of distributions. The result hinges on a tight
control of the sparse spectral norm of the nonparametric Kendall’s tau esti-
mator of the correlation matrix, which is of independent interest. Empirically,
ROCKET outperforms the nonparanormal and Gaussian models in terms of
achieving accurate inference on simulated data. We also compare the three
methods on real data (daily stock returns), and find that the ROCKET esti-
mator is the only method whose behavior across subsamples agrees with the
distribution predicted by the theory.

1. Introduction. Probabilistic graphical models [Lauritzen (1996)] have been
widely used to explore complex systems and aid scientific discovery in areas
ranging from biology and neuroscience to financial modeling and social media
analysis. An undirected graphical model consists of a graph G “ pV,Eq, where
V “ t1, . . . , pu is the set of vertices and E is the set of edges, and a p-dimensional
random vector X “ pX1, . . . ,XpqJ that is Markov with respect to G. In particu-
lar, we have that Xa and Xb are conditionally independent given the remaining

Received February 2016; revised April 2017.
1Supported in part by an IBM Corporation Faculty Research Fund at the University of Chicago

Booth School of Business, and an Alfred P. Sloan Fellowship.
MSC2010 subject classifications. Primary 62G10; secondary 62F12, 62G20.
Key words and phrases. Graphical model selection, transelliptical graphical models, covariance

selection, uniformly valid inference, post-model selection inference, rank-based estimation.

3422

http://www.imstat.org/aos/
https://doi.org/10.1214/17-AOS1663
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


ROCKET: INFERENCE FOR TRANSELLIPTICAL GRAPHS 3423

variables tXc | c P t1, . . . , puzta, buu if and only if ta, bu R E. One of the central
questions in high-dimensional statistics is estimation of the undirected graph G

given n independent realizations of X, as well as quantifying uncertainty of the
estimator.

In this paper, we focus on (asymptotic) inference for elements in the la-
tent inverse covariance matrix under the semiparametric elliptical copula model
[Embrechts, Lindskog and McNeil (2003), Klüppelberg, Kuhn and Peng (2008)],
also known as the transelliptical model [Liu, Han and Zhang (2012)]. Let
X1, . . . ,Xn be n independent copies of the random vector X that follows a transel-
liptical distribution,

(1.1) X „ TEp�,ξ ;f1, . . . , fpq,

where � P R
p is a correlation matrix (i.e., �jj “ 1 for j “ 1, . . . , p), ξ P R is

a nonnegative random variable with Ptξ “ 0u “ 0, and f1, . . . , fp are univariate,
strictly increasing functions. Recall that X follows a transelliptical distribution if
the marginal transformation pf1pX1q, . . . , fppXpqq of X follows a (centered) el-
liptically contoured distribution with covariance matrix � [Fang, Kotz and Ng
(1990)]. Let � “ �´1 be the inverse covariance matrix, also known as the preci-
sion matrix. Under a Gaussian model, nonzero elements in � correspond to pairs
of variables that are conditionally dependent, that is, form an edge in the graph
G; under an elliptical model, nonzero elements in � correspond to variables that
are conditionally correlated [but in general it is possible to have �ab “ 0 where
fapXaq and fbpXbq are conditionally uncorrelated, but not conditionally indepen-
dent]. Under the model in (1.1), we construct an estimator for a fixed element of
the precision matrix, �ab, that is asymptotically normal. Furthermore, we con-
struct a confidence interval for the unknown parameter �ab that is valid and robust
to model selection mistakes. Finally, we construct a uniformly valid hypothesis
test for the presence of an edge in the graphical model.

Our main theoretical result establishes that given initial estimates of the regres-
sion coefficients for pfapXaq, fbpXbq on pfj pXj qqj‰a,b, one can obtain a

?
n-

consistent and asymptotically normal estimator for �ab. These initial estimators
need to converge at a sufficiently fast rate (see Section 3). In particular, we note
that we do not require strict sparsity in these regressions, and allow for an error
rate that is achievable by known methods such as a nonconvex Lasso [Loh and
Wainwright (2015)] (see Section 3.1). To achieve

?
n-consistent rate, our estima-

tor requires the same scaling for the sample size n as in the Gaussian case; this
sample size scaling is minimax optimal [Ren et al. (2015)].

Given accurate initial estimates, in order to construct the asymptotically normal
estimator, we prove a key result: that the vector signpXi ´ Xi1q is sub-Gaussian
at the scale Cp�q (the condition number of �), with dependence on the dimen-
sion p coming only through Cp�q (this problem was initially posed by Han and
Liu (2013), where sub-Gaussianity was proved for some special cases). This result
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allows us to construct an asymptotically normal estimator by combining the ini-
tial regression coefficient estimates with the Kendall’s tau rank correlation matrix.
In particular, the sub-Gaussianity result allows us to establish a new concentra-
tion result on the operator norm of the Kendall’s tau correlation matrix that holds
with exponentially high probability. This result allows us to uniformly control de-
viations of quadratic forms involving the Kendall’s tau correlation matrix over
approximately sparse vectors. These results are of independent interest and could
be used to extend recent results of Mitra and Zhang (2014), Wegkamp and Zhao
(2016) and Han and Liu (2013) to the elliptical copula setting. Furthermore, sub-
Gaussianity of signpXi ´ Xi1q, which in turn leads to a bound on the error of the
Kendall’s tau estimate of � in the sparse spectral norm, allows us to study proper-
ties of penalized rank regression in high dimensions.

We base our confidence intervals and hypothesis tests on the asymptotically nor-
mal estimator of the element �ab (see Section 2). We point out that our results hold
under milder conditions than those required in Ren et al. (2015), which treats the
special case of Gaussian graphical models. Most notably, we give a

?
n-consistent

estimator for elements in the precision matrix without requiring strong parametric
assumptions.

1.1. Relationship to literature. Our work contributes to several areas. First,
we contribute to the growing literature on graphical model selection in high di-
mensions. There is extensive literature on the Gaussian graphical model, where
it is assumed that X „ Np0,�q, in which case the edge set E of the graph G

is encoded by the nonzero elements of the precision matrix � [Meinshausen and
Bühlmann (2006), Yuan and Lin (2007), Rothman et al. (2008), Friedman, Hastie
and Tibshirani (2008), d’Aspremont, Banerjee and El Ghaoui (2008), Fan, Feng
and Wu (2009), Lam and Fan (2009), Yuan (2010), Cai, Liu and Luo (2011), Liu
and Wang (2017), Zhao and Liu (2014)]. Learning structure of the Ising model
based on the penalized pseudo-likelihood was studied in Höfling and Tibshirani
(2009), Ravikumar, Wainwright and Lafferty (2010) and Xue, Zou and Cai (2012).
More recently, Yang et al. (2015) studied estimation of graphical models under the
assumption that each of the nodes’ conditional distribution belongs to an exponen-
tial family distribution. See also Guo et al. (2011a, 2011b), Lee and Hastie (2012),
Cheng et al. (2017), Yang et al. (2012) and Yang et al. (2014) who studied mixed
graphical models, where the nodes’ conditional distributions are not necessarily
all from the same family (for instance, there may be continuous-valued nodes as
well as discrete-valued nodes). The parametric Gaussian assumption was relaxed
in Liu, Lafferty and Wasserman (2009), where graph estimation was studied under
a Gaussian copula model. More recently, Liu et al. (2012), Xue and Zou (2012)
and Liu, Han and Zhang (2012) show that the graph can be recovered in the Gaus-
sian and elliptical semiparametric model class under the same conditions on the
sample size n, number of nodes p and the maximum node degree in the graph k

as if the estimation was done under the Gaussian assumption. In our paper, we
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construct a novel
?

n-consistent estimator of an element in the precision matrix
without requiring oracle model selection properties.

Second, we contribute to the literature on high-dimensional inference. Re-
cently, there has been much interest on performing valid statistical inference in
the high-dimensional setting. Zhang and Zhang (2014), Belloni, Chernozhukov
and Hansen (2014), Belloni, Chernozhukov and Wei (2013), van de Geer et al.
(2014), Javanmard and Montanari (2014), Javanmard and Montanari (2013) and
Farrell (2015) developed methods for construction of confidence intervals for low-
dimensional parameters in high-dimensional linear and generalized linear mod-
els, as well as hypothesis tests. These methods construct honest, uniformly valid
confidence intervals and hypothesis tests based on the �1-penalized estimator in
the first stage. Similar results were obtained in the context of the �1-penalized
least absolute deviation and quantile regression [Belloni, Chernozhukov and Kato
(2013a, 2013b)]. Lockhart et al. (2014) study significance of the input variables
that enter the model along the lasso path. Lee et al. (2016) and Tibshirani et al.
(2016) perform post-selection inference conditional on the selected model. Liu
(2013), Ren et al. (2015) and Chen et al. (2016) construct

?
n-consistent estima-

tors for elements of the precision matrix � under a Gaussian assumption. We ex-
tend these results to perform valid inference under semiparametric elliptical copula
models. In a recent independent work, Gu et al. (2015) propose a procedure for in-
ference under a nonparanormal model. We will provide a detailed comparison in
Section 3 and Section 5.

1.2. Notation. Let rns denote the set t1, . . . , nu and let 1t¨u denote the indica-
tor function. For a vector a P R

d , we let supppaq “ tj : aj ‰ 0u be the support set,
and let }a}q , for q P r1,8q, be the �q -norm defined as }a}q “ p

ř

iPrns |ai |
qq1{q

with the usual extensions for q P t0,8u, that is, }a}0 “ | supppaq| and }a}8 “

maxiPrns |ai |.
For a matrix A P R

n1ˆn2 , for sets S Ă rn1s and T Ă rn2s, we write AST to
denote the |S| ˆ |T | submatrix of A obtained by extracting the appropriate rows
and columns. The sets S and/or T can be replaced by single indices, for example,
for S Ă rn1s and j P rn2s, ASj is a |S|-length vector. If A P R

nˆn is a square matrix,
for any T Ă rns we may write AT to denote the square submatrix AT T .

For a matrix A P R
n1ˆn2 , we use the notation vecpAq to denote the vector in

R
n1n2 formed by stacking the columns of A. We denote the Frobenius norm of

A by }A}2
F “

ř

iPrn1s,jPrn2s A
2
ij , and the operator norm (spectral norm) by }A}op,

that is, the largest singular value of A. The norms }A}1 and }A}8 are applied
entrywise, with }A}1 “

ř

ij |Aij | and }A}8 “ maxij |Aij |. We write CpAq to de-
note the condition number of A, that is, the ratio between the largest and smallest
singular values. For two matrices A P R

nˆm and B P R
rˆs , A b B P R

nrˆms de-
notes the Kronecker product, with pA b Bqik,j l “ AijBkl . For two matrices of the
same size, A,B P R

nˆm, A ˝ B P R
nˆm denotes the Hadamard product (i.e., the
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entrywise product), with pA ˝ Bqij “ AijBij . Kronecker products and Hadamard
products are defined also for vectors, by treating a vector as a matrix with one
column.

Throughout, �p¨q denotes the cumulative distribution function of the standard
normal distribution, that is, �ptq “ PtNp0,1q ď tu.

2. Preliminaries and method. Before introducing our method, we begin with
some preliminary definitions and properties of the transelliptical distribution and
related models.

Gaussian and nonparanormal graphical models. Suppose that X “ pX1, . . . ,

Xpq follows a multivariate normal distribution, X „ Npμ,�q. A Gaussian graph-
ical model represents the structure of the covariance matrix � with a graph, where
an edge between nodes a and b indicates that �ab ‰ 0, where � “ �´1 is the pre-
cision (inverse covariance) matrix. This model can be generalized by allowing for
arbitrary marginal transformations on the variables X1, . . . ,Xp . Liu, Lafferty and
Wasserman (2009) study the resulting distribution, the nonparanormal model (also
known as a Gaussian copula), where we write X „ NPNp�;f1, . . . , fpq, if the
marginally transformed vector pf1pX1q, . . . , fppXpqq follows a (centered) multi-
variate normal distribution,

`

f1pX1q, . . . , fppXpq
˘

„ Np0,�q.

The sparse structure of the underlying graphical model, representing the sparsity
pattern in � “ �´1, can then be recovered using similar methods as in the Gaus-
sian case. Note that the Gaussian model is a special case of the nonparanormal
model (by setting f1, . . . , fp each to be the identity function, or to be linear func-
tions if we would like a nonzero mean).

Elliptical and transelliptical graphical models. The elliptical model is a gen-
eralization of the Gaussian graphical model that allows for heavier-tailed depen-
dence between variables. The random vector X “ pX1, . . . ,Xpq follows an ellip-
tical distribution with the mean vector μ P R

p , covariance matrix � P R
pˆp and a

random variable (the “radius”) ξ ě 0, denoted by X „ Epμ,�, ξq, if we can write
X “ μ ` ξ ¨ A ¨ U , where AAJ “ � is a Cholesky decomposition of �, and where
U P R

p is a unit vector drawn uniformly at random (independently from the ra-
dius ξ ). Note that the level sets of this distribution are given by ellipses, centered
at μ and with shape determined by �. The Gaussian model is a special case of the
elliptical model (by taking ξ „ χp).

The transelliptical model (also known as an elliptical copula) combines the el-
liptical distribution with marginal transformations, much as the nonparanormal
distribution applies marginal transformations to a multivariate Gaussian. For a ran-
dom vector X P R

p , we write

X „ TEp�,ξ ;f1, . . . , fpq
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to denote that the marginally transformed vector pf1pX1q, . . . , fppXpqq follows a
centered elliptical distribution, specifically,

`

f1pX1q, . . . , fppXpq
˘

„ Ep0,�, ξq.

Here, the marginal transformation functions f1, . . . , fp are assumed to be strictly
increasing. Note that the Gaussian, nonparanormal and elliptical models are each
special cases of this model.

Pearson’s rho and Kendall’s tau. From this point on, we assume for each dis-
tribution that μ “ 0 and that � is a correlation matrix (i.e., diagonal elements are
equal to one, �aa “ 1). In the case of the Gaussian distribution X „ Np0,�q, the
entries of � are the (population-level) Pearson’s correlation coefficients for each
pair of variables, which in this case we can also write as �ab “ ErXaXbs. In this
setting, we can estimate � with the sample covariance.

In the nonparanormal setting, X „ NPNp�;f1, . . . , fpq, it is no longer the case
that �ab is equal to the (population-level) correlation CorrpXa,Xbq, due to the
marginal transformations. However, we can estimate f1, . . . , fp by performing
marginal empirical transformations of each Xa to the standard normal distribu-
tion. After taking these empirical transformations, � can again be estimated via
the empirical covariances. Similarly, for the elliptical model X „ Ep0,�, ξq, after
rescaling so that Erξ2s “ p we also have �ab “ ErXaXbs. We can therefore again
estimate � via the empirical covariance.

For the transelliptical distribution, in contrast, this is no longer possible. Tak-
ing scaling Erξ2s “ p for simplicity, we generalize the calculations above to
have �ab “ ErfapXaqfbpXbqs. Therefore, if we can estimate the marginal trans-
formations f1, . . . , fp , then we can estimate � using the empirical covariance
of the transformed data. However, unlike the nonparanormal model, estimating
f1, . . . , fp is not straightforward. The reason is that, for the elliptical distribu-
tion Ep0,�, ξq, the marginal distributions are not known unless the distribution of
the radius ξ is known. Therefore, marginally for each Xa , we cannot estimate fa

because we do not know what should be the marginal distribution after transfor-
mation, that is, what should be the marginal distribution of fapXaq. [In contrast,
in the nonparanormal model, fapXaq is marginally normal.]

As an alternative, Liu, Han and Zhang (2012) use the Kendall rank correlation
coefficient (Kendall’s tau). At the population level, it is given by

τab :“ τ pXa,Xbq “ E
“

sign
`

Xa ´ X1
a

˘

¨ sign
`

Xb ´ X1
b

˘‰

,

where X1 is an i.i.d. copy of X. Unlike Pearson’s rho, the Kendall’s tau coeffi-
cient is invariant to marginal transformations: since fa, fb are strictly increasing
functions, we see that

sign
`

fapXaq ´ fa

`

X1
a

˘˘

¨ sign
`

fbpXbq ´ fb

`

X1
b

˘˘

“ sign
`

Xa ´ X1
a

˘

¨ sign
`

Xb ´ X1
b

˘

.
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At the sample level, Kendall’s tau can be estimated by taking a U-statistic compar-
ing each pair of distinct observations:

(2.1) pτab “
1
`

n
2

˘

ÿ

1ďiăi1ďn

signpXia ´ Xi1aq ¨ signpXib ´ Xi1bq.

When X follows an elliptical distribution, Theorem 2 of Lindskog, McNeil and
Schmock (2003) gives us the following relationship between Kendall’s tau and the
Pearson’s rho coefficients given by the covariance matrix �:

(2.2) �ab “ sin

ˆ

π

2
τab

˙

for each a, b P rps.

Since Kendall’s tau is invariant to marginal transformations, this identity holds
for the transelliptical family as well. For this reason, Liu, Han and Zhang (2012)
estimate the covariance matrix � by

(2.3) p�ab “ sin

ˆ

π

2
pτab

˙

.

Note, however, that p� is not necessarily positive semidefinite.
While Spearman’s rho, like Kendall’s tau, is also invariant to marginal trans-

formations, Liu, Han and Zhang (2012) comment that there is no equivalence be-
tween � and the population-level Spearman’s rho values [analogous to (2.2) for
Kendall’s tau] which holds uniformly across the entire elliptical (or transelliptical)
family. Therefore, this type of estimator as in (2.3) could only be carried out with
Kendall’s tau.

For the remainder of this paper, p� denotes the estimate given here in (2.3). The
matrix of the Kendall’s tau coefficients is denoted as T , with entries Tab :“ τab,
and pT denotes its empirical estimate [with entries as in (2.1)].

Comparing models: Tail dependence. It is clear that, compared to a Gaussian
graphical model, the nonparanormal model allows for data that may be extremely
heavy-tailed (in the marginal distributions). A more subtle consideration is the
question of tail dependence between two or more of the variables. In particular, the
nonparanormal model does not allow for tail dependence between two variables
to be any stronger than in the Gaussian distribution itself. Specifically, consider
pairwise α-tail dependence between Xa and Xb, given by

TailαpXa,Xbq :“ Corr
`

1
�

Xa ě qXa
α

(

,1
�

Xb ě qXb
α

(˘

,

where qXa
α is the α-quantile of the marginal distribution of Xa , and same for Xb.

Taking α Ñ 1, this is a measure of the correlation between the extreme right tail of
Xa and the extreme right tail of Xb. (Of course, we can also consider the left tail
of the distribution of Xa and/or Xb.)
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FIG. 1. Tail dependence for normal and elliptical distributions on R
2. Data is generated as in

(2.4). The figure displays TailαpX1,X2q, estimated empirically from a sample size n “ 20,000.

Note that marginal transformations of each variable do not affect this measure,
since the quantiles qXa

α , qXb
α take these transformations into account. In particular,

the nonparanormal distribution has the same tail correlations TailαpXa,Xbq as the
multivariate Gaussian distribution (with the same �). In contrast, an elliptical or
transelliptical model can exhibit much higher tail correlations. Since real data often
exhibits heavy tail dependence between variables, the flexible transelliptical model
may be a better fit in many applications.

We demonstrate this behavior with a simple example in Figure 1. Take

(2.4) X “ pX1,X2q „ Ep0,�, ξq with � “

ˆ

1 1{
?

2
1{

?
2 1

˙

,

where ξ „ χ2 ¨
?

d{χd for d P t0.1,1,5,10,8u, corresponding to a multivariate
t-distribution with d degrees of freedom [note that d “ 8 is equivalent to taking
X „ Np0,�q]. Note that at α “ 0.5, the relevant quantiles are qX1

α “ qX2
α “ 0,

and so the tail correlation TailαpX1,X2q is equal to the Kendall’s tau coefficient
τ pX1,X2q “

2
π

arcsinp�12q “ 0.5 at any value of d . Figure 1 shows that, as α Ñ 1,
the tail correlation decreases toward zero for the normal distribution (d “ 8) but
grows for low values of d .

Therefore, the shift from a nonparanormal to a transelliptical model is impor-
tant, since it allows us to model variables with high tail dependence, that is, high
dependence between their “extreme events.”

2.1. ROCKET: An asymptotically normal estimator. Suppose that our data
points Xi are drawn i.i.d. from a transelliptical distribution with covariance ma-
trix �. We would like to perform inference on a particular entry of the precision
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matrix � “ �´1, specifically, we are interested in producing a confidence interval
for �ab where a ‰ b P t1, . . . , pu is a prespecified node pair.

To move toward constructing a confidence interval, we introduce a few defini-
tions and calculations. First, let I “ t1, . . . , puzta, bu, and observe that by block-
wise matrix inversion, we can calculate the ta, bu ˆ ta, bu sub-block of � as fol-
lows:

(2.5) �ab,ab “
`

�ab,ab ´ �ab,I�
´1
I �I,ab

˘´1
.

Define γa “ �´1
I �Ia and γb “ �´1

I �Ib. In the nonparanormal graphical model
setting, these are the regression coefficients when fapXaq or fbpXbq is regressed
on tfj pXj q : j P Iu; in the linear model setting, this idea has been used in Sun and
Zhang (2012a) and Belloni, Chernozhukov and Hansen (2014). We then have

�ab,I�
´1
I �I,ab “ pγaγbq

J�I,ab “ �J
I,abpγaγbq “ pγaγbq

J�I pγaγbq.

We can therefore rewrite (2.5) as follows (this somewhat redundant formulation
will allow for a favorable cancellation of error terms later on):

(2.6)
� :“ p�ab,abq

´1

“ �ab,ab ´ pγaγbq
J�I,ab ´ �J

I,abpγaγbq ` pγaγbq
J�I pγaγbq.

We abuse notation and index the entries of � with the indices a and b, that is, we
denote � as lying in R

ta,buˆta,bu rather than R
2ˆ2.

Next, we define an oracle estimator of �, defined by plugging the true values
of γa and γb and the empirical estimate of � [given in (2.3)] into (2.6) above:

(2.7) r� “ p�ab,ab ´ pγaγbq
J
p�I,ab ´ p�J

I,abpγaγbq ` pγaγbq
J
p�I pγaγbq.

Later on (in Theorem 4.1), we will show that due to standard results on the
theory of U-statistics, this oracle estimator is asymptotically normal. If r� were
known, then we would have achieved our goal for inference in this model, as
�̃ab “ p�̃´1qab weakly converges to a normal random variable centered at �ab

with variance that scales as Op1{nq (we calculate this variance later).
Of course, in practice we do not know the true values of γa and γb, and must

instead use some available estimators, denoted by qγa and qγb (we discuss how to
obtain these preliminary estimates later on). Given the estimators of the regression
vectors, we then define our estimator of � as follows:

(2.8) q� “ p�ab,ab ´ pqγa qγbq
J
p�I,ab ´ p�J

I,abpqγa qγbq ` pqγa qγbq
J
p�I pqγa qγbq.

Since we are interested in �ab rather than in the matrix �, as a final step we define
our estimator

(2.9) q�ab “
`

q�´1˘

ab
.
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In order to make inference about �ab, we approximate the distribution of q�ab,
which is a function of q�. We first treat the distribution of the corresponding entry
in the oracle estimator r�. To do so, let u, v P R

pn be the vectors with entries

ua “ 1, ub “ 0, uI “ ´γa and va “ 0, vb “ 1, vI “ ´γb,

and observe from (2.6) and (2.7) that �ab “ uJ sinp
π
2 T qv while r�ab “ uJ ×

sinp
π
2
pT qv. Now, taking a linear approximation to sinp¨q, we can write

r�ab ´ �ab

«

B

uvJ
˝

π

2
cos

ˆ

π

2
pT

˙

, pT ´ T

F

“
1
`

n
2

˘

ÿ

iăi1

B

uvJ
˝

π

2
cos

ˆ

π

2
pT

˙

, signpXi ´ Xi1q signpXi ´ Xi1q
J

´ T

F

.

To study the variability of this error, we consider the kernel

g
`

X,X1
˘

“ sign
`

X ´ X1
˘J

ˆ

uvJ
˝ cos

ˆ

π

2
T

˙˙

sign
`

X ´ X1
˘

.

We will see later on that understanding the behavior of this kernel will allow us
to characterize the distribution of the oracle estimator r�ab, and from there, our
empirical estimator q�ab and ultimately q�ab. Of course, gpX,X1q itself depends on
unknown quantities, namely u, v and T , so we replace these with their estimates
in our empirical version of the kernel: define the (random) kernel

qg
`

X,X1
˘

“ sign
`

X ´ X1
˘J

ˆ

quqvJ
˝ cos

ˆ

π

2
pT

˙˙

sign
`

X ´ X1
˘

,

where

qua “ 1, qub “ 0, quI “ ´qγa and qva “ 0, qvb “ 1, qvI “ ´qγb.

(Note that we have defined qu and qv so that q�ab “ quJ
p�qv.) Then define

qSab “
π

detpq�q
¨

g

f

f

e

1

n

ÿ

i

ˆ

1

n ´ 1

ÿ

i1‰i

qgpXi,Xi1q ´ meanpqgq

˙2

,

where meanpqgq “
`

n
2

˘´1 ř
iăi1 qgpXi,Xi1q. We will see later on that qS2

ab{n esti-

mates the variance of q�ab and that the expression above arises naturally from the
theory of U-statistics.

Our main result, Theorem 3.5 below, will prove that
?

n ¨
q�ab´�ab

qSab
follows a

distribution that is approximately standard normal. Therefore, an approximate p1´

α)-confidence interval for �ab is given by

(2.10) q�ab ˘ zα{2 ¨
qSab
?

n
,
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where zα{2 is the appropriate quantile of the normal distribution, that is, PtNp0,

1q ą zα{2u “ α{2.

Notation for fixed versus random quantities. From this point on, as much as
possible throughout the main body of the paper, quantities that depend on the data
and depend on the initial estimates qγa , qγb are denoted with a “check” accent, for
example, q�. Quantities that depend on the data, but do not depend on qγa, qγb, are
denoted with a “hat” accent, for example, p�. Any quantities with neither a “hat”
nor a “check” are population quantities, that is, they are not random. Two important
exceptions are the data itself, X1, . . . ,Xn, and the oracle estimator, r�, which is of
course data-dependent (but does not depend on qγa, qγb).

3. Main results. In this section, we give a theoretical result showing that the
confidence interval constructed in (2.10) has asymptotically the correct coverage
probability, as long as we have reasonably accurate estimators of γa “ �´1

I �Ia

and γb “ �´1
I �Ib. Our asymptotic result considers a problem whose dimension

pn ě 2 grows with the sample size n. We also allow for the sparsity level in the
true inverse covariance matrix � P R

pnˆpn to grow.2 We use kn to denote an ap-
proximate bound on the sparsity in each column of � (details given below).

We begin by stating several assumptions on the distribution of the data and on
the initial estimators qγa and qγb. All of the constants appearing in these assumptions
should be interpreted as values that do not depend on the dimensions pn,pn, knq

of the problem.

ASSUMPTION 3.1. The data points X1, . . . ,Xn P R
pn are i.i.d. draws from

a transelliptical distribution, Xi
i.i.d.
„ TEp�,ξ ;f1, . . . , fpnq, where f1, . . . , fpn are

any strictly monotone functions, ξ ě 0 is any random variable with Ptξ “ 0u “ 0,
and the covariance matrix � P R

pnˆpn is positive definite, with diagp�q “ 1 and
bounded condition number,

Cp�q “
λmaxp�q

λminp�q
ď Ccov,

for some constant Ccov.

ASSUMPTION 3.2. The ath and bth columns of the true inverse covariance �,
denoted by �a and �b, are approximately kn-sparse, with

}�a}1 _ }�b}1 ď Csparse

a

kn,

for some constant Csparse.

2While �, �, etc. all depend on the sample size n since the dimension of the problem grows, we
abuse notation and do not write �n, �n, etc.; the dependence on n is implicit.
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ASSUMPTION 3.3. For some constant Cest and for some δn ą 0, with proba-
bility at least 1 ´ δn, for each c “ a, b, the preliminary estimate qγc of the vector γc

satisfies

(3.1) }qγc ´ γc}2 ď Cest

c

kn logppnq

n
, }qγc ´ γc}1 ď Cest

d

k2
n logppnq

n
.

ASSUMPTION 3.4. Define the kernel hpX,X1q “ signpX ´ X1q b signpX ´

X1q P R
p2

n and let h1pXq “ ErhpX,X1q | Xs. Define the total variance �h “

VarphpX,X1qq and the conditional �h1 “ Varph1pXqq, where X,X1 i.i.d.
„ TEp�,ξ ;

f1, . . . , fpnq. Then for some constant Ckernel ą 0,3

Ckernel ¨ �h ĺ �h1 ĺ �h.

Assumption 3.1 assumes that the smallest and largest eigenvalues of the correla-
tion matrix � are bounded away from zero and infinity, respectively. This assump-
tion is commonly assumed in the literature on learning structure of probabilistic
graphical models [Ravikumar et al. (2011), Liu, Lafferty and Wasserman (2009),
Liu et al. (2012)]. Assumption 3.2 does not require that the precision matrix �

be exactly sparse, which is commonly assumed in the literature on exact graph
recovery [see, e.g., Ravikumar et al. (2011)], but only requires that rows �a and
�b have an �1 norm that does not grow too fast. Note that if �c, for c “ a, b, is
kn-sparse vector, then

}�c}1 ď
a

kn}�c}2 ď
a

knλmaxp�q ď Ccov

a

kn

and we could then set Csparse “ Ccov. Assumption 3.3 is a high-level condition,
which assumes existence of initial estimators of γa and γb that converge at a fast
enough rate. In the next section, we will see that Assumption 3.1 together with a
stronger version of Assumption 3.2 are sufficient for Assumption 3.3 to be satis-
fied with a specific estimator that is efficient to compute. Finally, Assumption 3.4
is imposed to allow for estimation of the asymptotic variance q�ab. While Assump-
tion 3.1 depends only on the correlation matrix � without reference to the distri-
bution of the radius ξ , Assumption 3.4 depends on both � and ξ and, therefore,
cannot be derived as a consequence of the choice of �.

We now state our main result.

THEOREM 3.5. Under Assumptions 3.1, 3.2, 3.2 and 3.4, there exists a con-
stant Cconverge, depending on Ccov,Csparse,Cest,Ckernel but not on the dimensions

3Here, we use the positive semidefinite ordering on matrices, that is, A ľ B if A ´ B ľ 0. Note
that the second part of the inequality, �h1 ĺ �h, is always true by the law of total variance.
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pn,pn, knq of the problem, such that

sup
tPR

ˇ

ˇ

ˇ

ˇ

P

"

?
n ¨

q�ab ´ �ab

qSab

ď t

*

´ �ptq

ˇ

ˇ

ˇ

ˇ

ď Cconverge ¨

d

k2
n log2

ppnq

n
`

1

pn

` δn.

We note that the result holds uniformly over a large class of data generating pro-
cesses satisfying Assumptions 3.1, 3.2, 3.3 and 3.4, which are relatively weak as-
sumptions compared to much of the sparse estimation and inference literature; we
emphasize that the result holds without requiring exact model selection or oracle
properties, which hold only for restrictive sequences of data generating processes.
For example, we do not require the “beta-min” condition (i.e., a lower bound on
|�ab| for all true edges) or any incoherence conditions [Bühlmann and van de Geer
(2011)], which may be implausible in practice. Instead of requiring perfect model
selection, we only require estimation consistency as given in Assumption 3.3; our
weaker assumptions would not be sufficient to guarantee model selection consis-
tency.

As an immediate corollary, we see that the confidence interval constructed in
(2.10) is asymptotically correct.

COROLLARY 3.6. Under the assumptions and notation of Theorem 3.5, the
p1 ´ αq-confidence interval constructed in (2.10) fails to cover the true parameter
�ab with probability no higher than

α ` 2

„

Cconverge ¨

d

k2
n log2

ppnq

n
`

1

pn

` δn

j

.

Again this result holds uniformly over a large class of data generating distribu-
tions.

Theorem 3.5 is striking as it shows that we can form an asymptotically nor-
mal estimator of �ab under the transelliptical distribution family with the sample
complexity n “ �pk2

n log2
ppnqq. This sample size requirement was shown to be

optimal for obtaining an asymptotically normal estimator of an element in a pre-
cision matrix from multivariate normal data [Ren et al. (2015)]. More precisely,
let4

G0pc0, c1, knq “

"

� “ p�abqa,bPrpns : max
aPrpns

ÿ

b‰a

1t�ab ‰ 0u ď kn,

and c0 ď λminp�q ď λmaxp�q ď c1

*

,

4In their work, the constants c0, c1 are instead denoted by a constant M ě c
´1
0 _ c1; we use

different notation here to distinguish from the M used in Gu et al. (2015) which plays a very different
role, and which we denote by Mn as it is not necessarily constant.
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where c0, c1 ą 0 are constants. Then Theorem 1 in Ren et al. (2015) proves

inf
a,b

inf
q�ab

sup
G0pc0,c1,knq

P
�

|q�ab ´ �ab| ě ε0
`

n´1kn logppnq _ n´1{2˘(
ě ε0

and, therefore, our estimator is rate optimal in terms of the sample size scaling.
(Above, the infimum is taken over any estimator q�ab which is a measurable func-
tion of the data.) We can also consider a related optimality question: whether the
confidence interval we produce has the optimal (i.e., lowest possible) width, given
the desired coverage level. In the Gaussian setting, Ren et al.’s (2015) method
produces an interval which has asymptotically minimal length at the given sam-
ple size, due to the fact that the variance of their estimator matches the Fisher
information. Our ROCKET method does not enjoy this theoretical property, but
empirically we observe that our confidence intervals are only slightly wider than
those produced by Ren et al.’s (2015) method, for Gaussian data.

At this point, it is also worth mentioning the result of Gu et al. (2015), who study
inference under Gaussian copula graphical models. They base their inference pro-
cedure on decorrelating a pseudo score function for the parameter of interest and
showing that it is normally distributed. Their main result, stated in Theorem 4.10,
requires the sample size to satisfy

k3
nM

6
n

ˆ

logppnq

n

˙3{2

` k2
nM

3
n

logppnq

n
“ o

`

n´1{2˘,

where Mn “ maxaPrpns

ř

bPrpns |�ab|. As Mn can be potentially as large as
?

kn,
it is immediately clear that our result achieves much better scaling on the sample
size.

3.1. Initial estimators. The validity of our inference method relies in part on
the accuracy of the initial estimators qγa and qγb, which are assumed to satisfy er-
ror bounds with high probability as stated in Assumption 3.3—that is, with high
probability, we have

}qγc ´ γc}2 ď Cest

c

kn logppnq

n
, }qγc ´ γc}1 ď Cest

d

k2
n logppnq

n
,

for c “ a, b, where Cest is some constant. Below, we will prove that these required
error rates can be obtained, under an additional sparsity assumption, by the Lasso
estimators

(3.2) qγc “ argmin
γ PRI ;}γ }1ďCcov

?
2kn

"

1

2
γ J

p�Iγ ´ γ J
p�Ic ` λ}γ }1

*

for each c “ a, b, when the penalty parameter λ is chosen appropriately. In fact,
these optimization problems may not be convex, because p�I will not necessarily
be positive semidefinite.
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We now turn to proving that any local minima for (3.2) for c “ a, b will satisfy
the required error rates of Assumption 3.3. To proceed, we will use the theoretical
results of Loh and Wainwright (2015), which gives a theory for local minimizers
of nonconvex regularized objective functions. In particular, any local minimizers
of the two optimization problems will satisfy requirements of Assumption 3.3 and,
therefore, we only need to be able to run optimization algorithms that find local
minima. We specialize their main result to our setting.

THEOREM 3.7 [Adapted from Loh and Wainwright (2015), Theorem 1]. Con-
sider any n,p ě 1, any A P R

pˆp and z P R
p , and any k-sparse x‹ P R

p with
}x‹}1 ď R. Suppose that A satisfies restricted strong convexity conditions

(3.3) vJAv ě α1}v}
2
2 ´ τ1}v}

2
1 ¨

logppq

n
.

If

(3.4) n ě
16R2τ1 maxtα1, τ1u logppq

α2
1

and

(3.5) max

"

4
›

›Ax‹
´ z

›

›

8
,4α1

c

logppq

n

*

ď λ ď
α1

6R

then for any qx that is a local minimum of the objective function 1
2xJAx ´ xJz `

λ}x}1 over the set tx P R
d : }x}1 ď Ru, it holds that

›

›

qx ´ x‹
›

›

2 ď
1.5λ

?
k

α1
and

›

›

qx ´ x‹
›

›

1 ď
6λk

α1
.

We apply Loh and Wainwright’s (2015) results, Theorem 3.7, to our problem of
estimating γa and γb in a setting where we assume exact sparsity. (It is likely that
similar results would hold for approximate sparsity, but here we use exact sparsity
to fit the assumptions of this existing theorem.)

COROLLARY 3.8. Suppose that Assumption 3.1 holds. Assume addition-
ally that the columns �a , �b of the true inverse covariance � “ �´1 are kn-
sparse. Then there exist constants Csample, CLasso, depending on Ccov but not
on pn, kn,pnq, such that if n ě Csamplekn logppnq then, with probability at least
1 ´

1
2pn

, any local minimizer qγa of the objective function

1

2
γ J

p�Iγ ´ γ J
p�Ia ` λ}γ }1

over the set tγ P R
I : }γ }1 ď Ccov

?
2knu satisfies

}qγa ´ γa}2 ď 3
?

2Ccovλ
a

kn and }qγa ´ γa}1 ď 24Ccovλ
a

kn,

where we choose λ “ CLasso ¨

b

logppnq

n
. The same holds for estimating γb.
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Using this corollary, we see that a local minimizer of (3.2), qγc, satisfies As-
sumption 3.3 with δn “

1
pn

and Cest “ 24CcovCLasso. We remark that in practice,
the constant CLasso suggested by the theory is in general unknown, but choosing
λ to be a small multiple of

a

logppnq{n generally performs well—for instance,
λ “ 2.1

a

logppnq{n as we use in our simulations, where the choice of the con-
stant 2.1 ensures that the penalty term dominates the variance of the elements of
the objective function’s derivative, that is, the elements of p�Iγ ´ p�Ic, at the true
solution γ “ γc.

To prove that this corollary follows from Loh and Wainwright’s (2015) result
(Theorem 3.7), it is sufficient to check that the restricted strong convexity condition
(3.3) holds with high probability for the matrix p�I , and then compute the necessary
values for λ and the other parameters of Theorem 3.7. The proof is technical and
relies on novel results on concentration of the Kendall’s tau correlation matrix (see
the Supplementary Materials [Barber and Kolar (2018)]).

We have provided sufficient condition for a local minimizer of (3.2) to satisfy
Assumption 3.3; however, many other estimators can be used as initial estima-
tors. For example, one could use the Dantzig selector [Candes and Tao (2007)].
Potential benefits of the Dantzig selector over the optimization program in (3.2)
are twofold. First, the optimization program is convex even when �̂I is not pos-
itive semidefinite. Second, one does not need to know an upper bound R on the
�1 norm of �c for c “ a, b. Using the techniques similar to those used to prove
Corollary 3.8, we can also prove that Assumption 3.3 holds when the Dantzig se-
lector is used as an initial estimator. For large problems, however, Dantzig selector
type methods are computationally much slower than Lasso type methods; in our
empirical results, we implement the Lasso rather than the Dantzig selector since
we study graphs with as many as 1000 nodes.

In practice, we have found that in simulations, using the Lasso for model se-
lection, and then refitting without a penalty, leads to better empirical performance.
Specifically, for each c “ a, b, we first fit

qγ Lasso
c “ argmin

γ PRI

"

1

2
γ J

p�Iγ ´ γ J
p�Ia ` λ}γ }1

*

;

or, more precisely, find a local minimum of this nonconvex optimization problem
over the ball tγ : }γ }1 ď Ru for a large radius R. (In practice, every iteration
will stay inside this ball; therefore, as long as we see convergence in our iterative
algorithm for solving this nonconvex Lasso, we do not concern ourselves with this
theoretical boundedness constraint.)

We then extract the combined support of the two solutions, qJ “ supppqγ Lasso
a q Y

supppqγ Lasso
b q, and refit the coefficients using least-squares:

qγc “ pp�
qJ
q

´1
p�

qJc
for c “ a, b.
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Following the work of Belloni and Chernozhukov (2013) or Sun and Zhang
(2012b), it can be shown that the refitted estimators also satisfy the Assump-
tion 3.3; in practice, refitting improves the accuracy of these preliminary estimators
by reducing shrinkage bias.

Finally, we remark that if we would like to perform inference for all
`

pn

2

˘

poten-
tial edges, then we require 2 ¨

`

pn

2

˘

„ p2
n many initial estimators to be computed;

this is of course quite computationally demanding. However, Ren et al. (2015) pro-
pose a simple modification that significantly reduces computation time: for each
node a we can first regress Xa on all the other variables; call this solution qγ all

a .
Next, for any b ‰ a, if pqγ all

a qb “ 0, then this solution qγ all
a is already optimal for

regressing node a on nodes I “ rpnszta, bu; this will be the case for most nodes b

due to sparsity. With this modification, the actual number of regressions required
is far smaller—if each node a forms edges with at most kn other nodes (i.e., qγ all

a is
kn-sparse), then we will require only pnpkn ` 1q many regressions in total to form
all of the initial estimators.

4. Main technical tools. In this section, we outline the proof of Theorem 3.5
(Section 4.1) and state the key technical result that establishes the sign-sub-
Gaussianity property of a vector X following a transelliptical distribution (Sec-
tion 4.2). We also illustrate an application of this technical result to establishing a
bound on �̂ ´ � (Section 4.3).

4.1. Sketch of proof for main result. The proof of Theorem 3.5 has two key
steps. First, in Step 1, we prove that the distribution of r�ab, the oracle estimator
of �ab, is asymptotically normal, with

?
n ¨

r�ab ´ �ab

Sab detp�q
Ñ Np0,1q,

where Sab is the asymptotic variance of �̃ab. (Explicit form of Sab is given in the
proof of Theorem 4.1.) Next, in Step 2, we prove that the difference between the
estimator and the oracle estimator, q� ´ r�, converges to zero at a fast rate and that
the variance estimator qSab converges to Sab at a fast rate. Combining these steps,
we prove that q�ab is an asymptotically normal estimator of �ab. The detailed
proofs for each step are found in the Supplementary Materials [Barber and Kolar
(2018)]. Here, we outline the main results for each step.

Step 1 establishes the Berry–Esseen-type bound for the centered and normalized

oracle estimator
?

n ¨
r�ab´�ab

Sab¨detp�q
. We approximate the oracle estimator r�ab by a

linear function of the Kendall’s tau statistic pT , which is a U-statistic of the data.
We prove that the variance of the linear approximation is bounded away from zero
and apply existing results on convergence of U-statistics. The following result is
proved in the Supplementary Materials [Barber and Kolar (2018)].
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THEOREM 4.1. Suppose that Assumptions 3.1, 3.2 and 3.4 hold. Then there
exist constants Cnormal, Cvariance depending on Ccov, Csparse, Ckernel but not on
pn,pn, knq, such that

sup
tPR

ˇ

ˇ

ˇ

ˇ

P

"

?
n ¨

r�ab ´ �ab

Sab ¨ detp�q
ď t

*

´ �ptq

ˇ

ˇ

ˇ

ˇ

ď Cnormal ¨
kn logppnq

?
n

`
1

2pn

,

where Sab is defined in the proof and satisfies Sab ¨ detp�q ě Cvariance ą 0.

Step 2 contains the main challenge of this problem, since it requires strong
results on the concentration properties of the Kendall’s tau estimator p� of the
covariance matrix �. The main ingredient for this step is a new result on “sign-sub-
Gaussianity,” that is, proving that the signs vector signpXi ´ Xi1q is sub-Gaussian
for i.i.d. observations Xi , Xi1 . Our results on sign-sub-Gaussianity are discussed
in Section 4.2 and their application to concentration of �̂ around � is given in
Section 4.3. Using these tools, we are able to prove the following theorem (proved
in the Supplementary Materials [Barber and Kolar (2018)]).

THEOREM 4.2. Suppose that Assumptions 3.1, 3.2 and 3.3 hold. Then there
exists a constant Coracle, depending on Ccov, Csparse, Cest but not on pn,pn, knq,
such that, if5 n ě 15kn logppnq, then with probability at least 1 ´

1
2pn

´ δn,

}q� ´ r�}8 ď Coracle ¨
kn logppnq

n

and

ˇ

ˇqSab ¨ detpq�q ´ Sab ¨ detp�q
ˇ

ˇ ď Coracle ¨

d

k2
n logppnq

n
.

4.2. Sign-sub-Gaussian random vectors. Recall the definition of a sub-
Gaussian random vector.

DEFINITION 4.3. A random vector X P R
p is C-sub-Gaussian if, for any fixed

vector v P R
p , it holds that ErevJXs ď eC¨}v}2

2{2.

For graphical models where the data points Xi come from a sub-Gaussian distri-
bution, the sample covariance matrix 1

n

ř

ipXi ´XqpXi ´XqJ, with X “
1
n

ř

i Xi ,
is known to concentrate near the population covariance, as measured by differ-
ent norms. For example, elementwise convergence of the sample covariance to
the population covariance, that is, convergence in } ¨ }8, is sufficient to establish

5Note that the additional condition n ě 15kn logppnq can be assumed to hold in our main result
Theorem 3.5, since if this inequality does not hold, then the claim in Theorem 3.5 is trivial.
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rates of convergence for the graphical Lasso, CLIME or graphical Dantzig se-
lector for estimating the sparse inverse covariance [Ravikumar et al. (2011), Cai,
Liu and Luo (2011), Yuan (2010)]. Similar results can be obtained also for the
transelliptical family, since }T̂ ´ T }8 ď C

a

logppq{n, and hence }�̂ ´ �}8 ď

C
a

logppq{n, as was shown in Liu et al. (2012) and Liu, Han and Zhang (2012).
However, in order to construct asymptotically normal estimators for the elements
of the precision matrix, stronger results are needed about the convergence of the
sample covariance to the population covariance [Ren et al. (2015)]. In particular,
a result on convergence in spectral norm, uniformly over all sparse submatrices, is
required. One can relate the convergence in the elementwise �8 norm to (sparse)
spectral norm convergence, however, this would lead to suboptimal sample size.
One way to obtain a tight bound on the (sparse) spectral norm convergence is by
utilizing sub-Gaussianity of the data points Xi . This is exactly what we proceed to
establish.

Recall from (2.3) the Kendall’s tau estimator of the covariance,

p� “ sin

ˆ

π

2
pT

˙

where pT “
1
`

n
2

˘

ÿ

iăi1

signpXi ´ Xi1q signpXi ´ Xi1q
J.

Therefore, it is crucial to determine whether the vector signpXi ´ Xi1q is itself
sub-Gaussian, at a scale that does not depend heavily on the ambient dimension
pn.6 Using past results on elliptical distributions, we can reduce to a simpler case
using the arguments of Lindskog, McNeil and Schmock (2003) (proved in the
Supplementary Materials [Barber and Kolar (2018)]).

LEMMA 4.4. Let X,X1 i.i.d.
„ TEp�,ξ ;f1, . . . , fpq. Suppose that � is positive

definite, and that ξ ą 0 with probability 1. Then signpX ´ X1q is equal in distribu-
tion to signpZq, where Z „ Np0,�q.

Previous work has shown that a Gaussian random vector Z „ Np0,�q is “sign-
sub-Gaussian,” that is, signpZq is sub-Gaussian with variance proxy that depends
on pn only through Cp�q, for special cases when the covariance � is identity or
equicorrelation matrix [Han and Liu (2013)]. However, a result for general covari-
ance structures was previously unknown.

In the following lemma, we resolve this question, proving that Gaussian vectors
are sign-sub-Gaussian [recall Cp�q is the condition number of �].

LEMMA 4.5. Let Z „ Npμ,�q. Then signpZq ´ ErsignpZqs is Cp�q-sub-
Gaussian.

6Note that vJ signpXi ´ Xi1 q is obviously sub-Gaussian for any distribution on X, as it is a sum
of sub-Gaussian random variables [since signp¨q is bounded]; however, its scale could grow linearly
with pn.
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This lemma is the primary tool for our main results in this paper—specifically,
it is the key ingredient to the proof of Theorem 4.2, which bounds the errors q� ´
r� and qSab ¨ detpq�q ´ Sab ¨ detp�q. Lemma 4.5 is proved in the Supplementary
Materials [Barber and Kolar (2018)]. We also use this result in establishing results
in the following section.

4.3. Deterministic and probabilistic bounds on p� ´ �. Lemma 4.5 is instru-
mental in obtaining probabilistic bounds on p� ´ �. Results given in this section
are crucial for establishing Theorem 4.2 and Corollary 3.8.

Let Sk be the set of k-sparse vectors in the unit ball,

Sk “
�

u P R
p : }u}2 ď 1, }u}0 ď k

(

,

and abusing notation, let } ¨ }Sk
denote the sparse spectral norm for matrices, that

is, }M}Sk
“ maxu,vPSk

uJMv.
The following lemma provides a bound on the error in Kendall’s tau, that is, on

pT ´ T , in this sparse spectral norm (with the proof given in the Supplementary
Materials [Barber and Kolar (2018)]).

LEMMA 4.6. Suppose that k ě 1 and δ P p0,1q satisfy logp2{δq ` 2k ×
logp12pq ď n. Then with probability at least 1 ´ δ it holds that

}pT ´ T }Sk
ď 32p1 `

?
5qCp�q ¨

c

logp2{δq ` 2k logp12pq

n
.

Next, we relate �̂ to T̂ , with the following deterministic bound on the sparse
spectral norm of the error of the covariance estimator p�, which is proven in the
Supplementary Materials [Barber and Kolar (2018)].

LEMMA 4.7. The following bound holds deterministically: for any k ě 1,

(4.1) }p� ´ �}Sk
ď

π2

8
¨ k}pT ´ T }

2
8 ` 2π}pT ´ T }Sk

.

A result in de la Peña and Giné (1999,Theorem 4.1.8) bounds }pT ´ T }8 with
high probability (details of this bound are given in the Supplementary Materials
[Barber and Kolar (2018)]). Combining the bound on }pT ´ T }8 with Lemmas 4.6
and 4.7, we immediately obtain the following corollary.

COROLLARY 4.8. Take any δ1, δ2 P p0,1q and any k ě 1 such that logp2{δ2q`

2k logp12pq ď n. Then, with probability at least 1 ´ δ1 ´ δ2, the following bound
on p� ´ � holds:

}p� ´ �}Sk
ď

π2

8
¨ k ¨

4 logp2
`

p
2

˘

{δ1q

n

` 2π ¨ 32p1 `
?

5qCp�q ¨

c

logp2{δ2q ` 2k logp12pq

n
.

(4.2)
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Finally, we use a result based on the work of Sun and Zhang (2012b), in order
to extend this sparse spectral norm bound to a bound holding for all approximately
sparse vectors u and v.

LEMMA 4.9 [Based on Proposition 5 of Sun and Zhang (2012b)]. For any
fixed matrix M P R

pˆp and vectors u, v P R
p , and any k ě 1,

ˇ

ˇuJMv
ˇ

ˇ ď
`

}u}2 ` }u}1{
?

k
˘

¨
`

}v}2 ` }v}1{
?

k
˘

¨ }M}Sk
.

Results of Lemma 4.6 and Corollary 4.8 can be compared to Theorem 2 in
Mitra and Zhang (2014), which proves essentially the same result for the Kendall’s
tau estimate of �, but only for the nonparanormal (Gaussian copula) model;
their technique does not extend immediately to the transelliptical model. When
Cp�q “ Op1q, we extend their result to the transelliptical model and, as a spe-
cial case, this provides an alternative proof for their result on the Gaussian copula
model. We note that their result does not depend on the condition number of the
covariance matrix, but only on the maximum eigenvalue. However, in the con-
text of graphical models it is commonly assumed that the smallest eigenvalue is
a constant. Furthermore, our results in Lemma 4.6 and Corollary 4.8 can also be
compared with Theorem 4.10 of Han and Liu (2013), which give similar bounds
on the spectral norm of sparse submatrices of pT ´ T and p� ´ �, but with a sign-
sub-Gaussianity assumption on the distribution. We rigorously establish the same
bounds for all well-conditioned covariance matrices, without explicitly making the
sign-sub-Gaussian assumption.

5. Simulation studies. In this section, we illustrate finite sample properties of
ROCKET described in Section 2 on simulated data. (A real data experiment, and
some additional simulations, are presented in the Supplementary Materials [Barber
and Kolar (2018)].)

We use ROCKET to construct confidence intervals for edge parameters and re-
port empirical coverage probabilities as well as the length of constructed intervals.
For comparison, we also construct confidence intervals using the procedure of Ren
et al. (2015), which is based on the Pearson correlation matrix, a nonparanormal
estimator of the correlation matrix (NPN) proposed in Liu, Lafferty and Wasser-
man (2009), and the pseudo score procedure of Gu et al. (2015). For the first two
methods, we use the plug-in estimate of the correlation matrix together with (2.8)
to estimate �ab. Recall that Liu, Lafferty and Wasserman (2009) estimate the cor-
relation matrix based on the marginal transformation of the observed data. Let

F̃apxq “

$

’

&

’

%

δn if F̂apxq ă δn,

F̂apxq if δn ď F̂apxq ď 1 ´ δn,

1 ´ δn if F̂apxq ą 1 ´ δn,
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where F̂apxq “ n´1 ř
i 1tXia ă xu is the empirical CDF of Xa and δn “

p4n1{4
a

π logpnqq´1. The correlation matrix �̂ “ p�̂abqab is then estimated as
�̂ab “ yCorrp�pF̃apXiaqq,�pF̃bpXibqqq. Asymptotic variance of estimators of
�ab based on the Pearson or nonparanormal correlation matrix is obtained as
qS2
ab “ n´1pq�aa

q�bb ` q�2
abq. Gu et al. (2015) estimate �ab as

q�PS
ab “

�̂abpp�̂�̂qab ` p�̂�̂qabq ´ p�̂�̂�̂qab

p�̂�̂qab ` p�̂�̂qab ´ 1
,

where �̂ is the Kendall’s tau estimator of the covariance matrix in (2.3) and �̂

is an initial estimator of the precision matrix. Under suitable conditions, �̂PS
ab is

asymptotically normal with the asymptotic variance that can be consistently esti-
mated as in Corollary 4.12 of Gu et al. (2015). Gu et al. (2015) suggest using the
CLIME estimator [Cai, Liu and Luo (2011)] to construct �̂, however, we find that
empirically the method performs better using lasso-with-refitting to estimate each
row of �, similar to Sun and Zhang (2012b). For all simulations, we set the tuning
parameter λ “ 2.1

a

logppnq{n, as suggested by our theory—this constant is large
enough so that the penalty dominates the variance of each element of the score.
All computations are carried out in Matlab.

Simulation 1. We generate data from the model X „ Ep0,�, ξq, where ξ fol-
lows a t-distribution with 5 degrees of freedom. The inverse covariance matrix �

encodes a grid where each node is connected to its four nearest neighbors with the
nonzero elements of �0 equal to ω “ 0.24. Diagonal element of �0 are equal to 1.
Let p�0q´1 “ �0. Then set � “ pdiagp�0qq´1{2�0pdiagp�0qq´1{2 and � “ �´1.
(Additional simulations in the Supplementary Materials [Barber and Kolar (2018)]
show the same experiment on a chain graph structure.)

We take a grid of size 30 ˆ 30 (so that pn “ 900) and take sample size n “ 400.
Figure 2 shows quantile-quantile (Q-Q) plots based on 1000 independent realiza-

tions of the test statistic error,
?

n ¨
q�ab´�ab

qSab
, for the four methods together with

the reference line showing quantiles of the standard normal distribution. From this

figure, we observe that the quantiles of the test statistic error
?

n
q�ab´�ab

qSab
based

on ROCKET is closest to the quantiles of the standard normal random variable.
We further quantify these results in Table 1, which reports empirical coverage and

width of the confidence intervals based on
?

n
q�ab´�ab

qSab
. From the table, we can

observe that the coverage of the confidence intervals based on ROCKET and the
pseudo score are closest to nominal coverage of 95%. The three node pairs dis-
played in this figure and table, namely ωp2,2q,p2,3q, ωp2,2q,p3,3q, ωp2,2q,p10,10q, cor-
respond to a true edge, a nonedge between nearby nodes that is therefore easy to
mistake for an edge, and a nonedge between distant nodes, respectively.
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FIG. 2. Simulation 1 (transelliptical data). Q-Q plot of
?

n ¨
q�ab´�ab

qSab

when � corresponds to a

grid graph structure. Row 1 corresponds to an edge, row 2 to a close nonedge, and row 3 to a far
nonedge.

These results are not surprising, since neither the Pearson nor the nonpara-
normal correlation matrix consistently estimate the true �. In contrast, both
ROCKET and the pseudo score method are able to construct a test statistic

?
n ¨

q�ab
qSab

that is asymptotically distributed as a normal random variable. The asymptotic
distribution provides a good approximation to the finite sample distribution of
?

n ¨
q�ab´�ab

qSab
.

Simulation 2. We illustrate performance of ROCKET when data are gener-
ated from a normal and nonparanormal distribution. We consider � correspond-

TABLE 1
Simulation 1 (transelliptical data). Percent empirical coverage (average length) of 95% confidence

intervals based on 1000 independent simulation runs

ROCKET Pearson NPN Pseudo score

ωp2,2q,p2,3q “ 0.37 94.6 (0.51) 36.6 (0.88) 82.4 (0.48) 92.2 (0.52)
ωp2,2q,p3,3q “ 0 94.3 (0.53) 81.0 (0.86) 88.3 (0.47) 94.8 (0.50)
ωp2,2q,p10,10q “ 0 94.9 (0.56) 78.3 (0.88) 89.1 (0.48) 95.5 (0.53)
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TABLE 2
Simulation 2 (Gaussian and nonparanormal data). Percent empirical coverage (average length) of

95% confidence intervals based on 1000 independent simulation runs

ROCKET Pearson NPN Pseudo score

Gaussian ωp2,2q,p2,3q “ 0.37 95.6 (0.33) 94.1 (0.32) 94.4 (0.32) 95.9 (0.33)
ωp2,2q,p3,3q “ 0 95.4 (0.35) 95.9 (0.34) 95.3 (0.34) 95.0 (0.35)
ωp2,2q,p10,10q “ 0 96.0 (0.36) 95.3 (0.35) 95.6 (0.35) 94.8 (0.36)

Transf. ωp2,2q,p2,3q “ 0.37 95.1 (0.35) 12.0 (0.33) 94.9 (0.33) 95.3 (0.35)
Gaussian ωp2,2q,p3,3q “ 0 95.3 (0.35) 93.1 (0.32) 94.9 (0.34) 94.7 (0.34)

ωp2,2q,p10,10q “ 0 93.7 (0.36) 93.2 (0.32) 94.2 (0.35) 94.8 (0.39)

ing to a grid as in Simulation 1, and generate n “ 400 samples from Np0,�´1q

and NPNp�´1; f̃1, . . . , f̃pq, where f̃j “ fmodpj´1,5q`1 with f1pxq “ x, f2pxq “

signpxq
a

|x|, f3pxq “ x3, f4pxq “ �pxq, f5pxq “ exppxq.
Table 2 summarizes results from the simulation. We observe that when data are

multivariate normal all methods perform well, with ROCKET and the pseudo score
having slightly wider intervals, but with similar coverage. When data are generated
from a nonparanormal distribution, using the Pearson correlation in (2.8) results
in confidence intervals that do not have nominal coverage due to the bias. In this
setting, nonparanormal estimator, ROCKET and the pseudo score still have the
correct nominal coverage. Note however that when Kendall’s tau is equal to zero,
Pearson correlation is also equal to zero, and coverage for Pearson improves. See,
for example, coverage for ωp2,2q,p3,3q and ωp2,2q,p10,10q.

Simulation 3. In this simulation, we illustrate the power of a test based on

the statistic
?

n ¨
q�ab
qSab

to reject the null hypothesis H0,ab : �ab “ 0. Samples are

generated from the Ep0,�, ξq with ξ having χpn , t5, and t1 distribution and the
covariance matrix is of the form � “ IP ` E where E12 “ E21 “ ρ and all other
entries zero, with pn “ 1000 and n “ 400. Note that ξ „ χpn implies that X is
multivariate normal. We also consider marginal transformation of X as described
in Simulation 2. Figure 3 plots empirical power curves based on 1000 independent
simulation runs for different settings. When the data follow a normal distribution
all methods have similar power. For other distributions, tests based on Pearson
and nonparanormal correlation do not have correct coverage and are shown for
illustrative purpose only.

6. Discussion. We have proposed a novel procedure ROCKET for inference
on elements of the latent inverse correlation matrix under high-dimensional ellip-
tical copula models. Our paper has established a surprising result, which states
that ROCKET produces an asymptotically normal estimator for an element of the
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FIG. 3. Simulation 3. Power plots for simulated data generated from a Gaussian distribution, and
from a multivariate t distribution with 5 d.f. or with 1 d.f.

inverse correlation matrix in an elliptical copula model with the same sample com-
plexity that is required to obtain an asymptotically normal estimator for an element
in the precision matrix under a multivariate normal distribution. Furthermore, this
sample complexity is optimal [Ren et al. (2015)]. The result is surprising as the
family of elliptical copula models is much larger than the family of multivariate
normal distributions. For example, it contains distributions with heavy tail depen-
dence as discussed in Section 2. ROCKET achieves the optimal requirement on
the sample size without knowledge of the marginal transformation. Our result is
also of significant practical importance. Since normal distribution is only a conve-
nient mathematical approximation to data generating process, we recommend us-
ing ROCKET whenever making inference about inverse correlation matrix, instead
of methods that heavily rely on normality. From simulation studies, even when data
are generated from a normal distribution, ROCKET does not lose power compared
to procedures that were specifically developed for inference under normality.

The main technical tool developed in the paper establishes that the sign of nor-
mal random vector, taken elementwise, is itself a sub-Gaussian random variable
with the sub-Gaussian parameter depending on the condition number of the co-
variance matrix � (but not on the dimension pn). Based on this result, we were
able to establish a tight tail bound on the deviation of sparse eigenvalues of the
Kendall’s tau matrix T̂ . This result is of independent interest and it would allow
us to improve a number of recent results on sparse principal component analysis,
factor models and estimation of structured covariance matrices [Mitra and Zhang
(2014), Han and Liu (2013), Fan, Han and Liu (2014)]. The sharpest result on the
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nonparametric estimation of correlation matrices in spectral norm under a Gaus-
sian copula model was established in [Mitra and Zhang (2014)]. Our results es-
tablish a similar result for the family of elliptical copula models and provide an
alternative proof for the Gaussian copula model.

Acknowledgment. This work was completed in part with resources provided
by the University of Chicago Research Computing Center.

SUPPLEMENTARY MATERIAL

Supplement to “ROCKET: Robust confidence intervals via Kendall’s tau
for transelliptical graphical models” (DOI: 10.1214/17-AOS1663SUPP; .pdf).
In the supplementary materials, we provide additional experimental results (as de-
scribed in Section 5), as well as details for all proofs of the theoretical results
provided in this paper.
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