Fully Stochastic Trust-Region Sequential Quadratic Programming for Equality-Constrained Optimization Problems

Abstract

We propose a trust-region stochastic sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with stochastic objectives and deterministic equality constraints. We consider a fully stochastic setting, where in each iteration a single sample is generated to estimate the objective gradient. The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to employ indefinite Hessian matrices (i.e., Hessians without modification) in SQP subproblems. As a trust-region method for constrained optimization, our algorithm needs to address an infeasibility issue – the linearized equality constraints and trust-region constraints might lead to infeasible SQP subproblems. In this regard, we propose an textitadaptive relaxation technique to compute the trial step that consists of a normal step and a tangential step. To control the lengths of the two steps, we adaptively decompose the trust-region radius into two segments based on the proportions of the feasibility and optimality residuals to the full KKT residual. The normal step has a closed form, while the tangential step is solved from a trust-region subproblem, to which a solution ensuring the Cauchy reduction is sufficient for our study. We establish the global almost sure convergence guarantee for TR-StoSQP, and illustrate its empirical performance on both a subset of problems in the CUTEst test set and constrained logistic regression problems using data from the LIBSVM collection.

Publication
Technical Report
Yuchen Fang
Yuchen Fang
MS Student (2021-2023)
Sen Na
Sen Na
PhD (2016-2021)

Sen Na was a PhD student in the Department of Statistics at The University of Chicago. Prior to graduate school, he obtained BS in mathematics at Nanjing University, China. His research interests lie in nonlinear and nonconvex optimization, dynamic programming, high-dimensional statistics and their interface.

Mladen Kolar
Mladen Kolar
Associate Professor of Econometrics and Statistics

Mladen Kolar is an Associate Professor of Econometrics and Statistics at the University of Chicago Booth School of Business. His research is focused on high-dimensional statistical methods, graphical models, varying-coefficient models and data mining, driven by the need to uncover interesting and scientifically meaningful structures from observational data.

Related