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Main takeaway

Optimization theory (= simple algorithms + convergence guarantees) applicable to all

strongly convex personalized FL objectives.

Tight convergence rates despite the generality: Matching best-known rates from the

literature (in all but one case). Novel guarantees for new objectives.

A unified Personalized FL objective

Optimization problem of interest:

min
w,β

F (w, β) := 1
M

M∑
m=1

fm(w, βm)

 . (1)

Notation: w ∈ Rd0: shared parameters, β = (β1, . . . , βM ), βm ∈ Rdm, ∀m ∈ [M ]: local parameters,

M : number of devices, fm : Rd0+dm → R: objective (not necessarily the local loss) that depends

on the local data at the m-th client.

Main idea: Choose fm(w, βm) to recover a particular personalized FL objective as an instance

of (1) and apply our optimization theory.

Detailed contributions

Universal (convex) optimization theory for personalized FL. We propose three algorithms

for solving the general personalized FL objective (1): i) Local Stochastic Gradient Descent

for Personalized FL ( LSGD-PFL ), ii) Accelerated block Coordinate Descent for Personalized

FL ( ACD-PFL ), and iii) Accelerated Stochastic Variance Reduced Coordinate Descent for

Personalized FL ( ASVRCD-PFL ).

Convergence rates. We provide lower complexity bounds for solving (1). ACD-PFL is

always optimal in terms of the communication and local computation when the full

gradients are available, while ASVRCD-PFL can be optimal either in terms of the number of

evaluations of the w-stochastic gradient or the β-stochastic gradient.
Single personalized FL objective. We propose a single objective (1) capable of recovering

all the existing personalized FL approaches by carefully constructing the local loss

fm(w, βm). Surprisingly, the optimization guarantees for (1) yield fast convergence for

individual special cases.

Personalization and communication complexity Our theory conclude that the

personalization has positive effect on the communication complexity of training FL models.

New personalized FL objectives The universal personalized FL objective (1) enables us to

obtain a range of novel personalized FL formulations as a special case.

Algorithms

LSGD-PFL: Mixture between Local SGD and SGD. Local SGD step is taken wrt to w-parameters,

minibatch SGD step taken wrt to β-parameters. Convergence guarantees of LSGD recovered

when d1 = d2 = · · · = dM = 0. Convergence guarantees of SGD recovered when d0 = 0.
ACD-PFL: An instance of the accelerated block coordinate descent with carefully designed non-

uniform sampling of coordinate blocks (w-variables or β-variables).

ASVRCD-PFL: ACD-PFL that subsamples the local finite sum combined with the variance reduc-

tion.

Optimization guarantees for solving (1)
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Table 1. Complexity guarantees for solving (1) ignoring constant and log factors. Assumptions: F is µ−strongly

convex, fm is convex and Lw smooth wrt w and Lβ-smooth wrt β. Symbol ` indicates minimax optimal complexity.

Local Stochastic Gradient Descent (LSGD): Local access to B-minibatch of stochastic gradients, each with

σ2-bounded variance. Each device takes (τ − 1) local steps in between of the communication rounds. Accelerated

Coordinate Descent (ACD): access to the full local gradient, yielding both the optimal communication complexity

and the optimal computational complexity (both in terms of ∇w and ∇β). ASVRCD: Assuming that fi is n-finite sum,

the oracle provides an access to a single stochastic gradient with respect to that sum. The corresponding local

computation is either optimal with respect to ∇w or with respect to ∇β. Achieving both optimal rates

simultaneously remains an open problem.

Smoothness and strong convexity for special cases.
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Table 2. Smoothness and strong convexity parameters for personalized FL objectives as an instance of (1). ♣: Rate

for novel personalized FL objective (extension of a known one). ♠: Best-known communication complexity

recovered for λ = O(L′). L′ (L′): smoothness of (components of) traditional FL objective, µ′: strong convexity of the

traditional FL.
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Special cases

Traditional FL: minw∈Rd F ′(w) := 1
M

∑M
m=1 f ′

m(w),
Fully personalized FL: minβ1,...,βM∈Rd Ffull(β) := 1

M

∑M
m=1 f ′

m(βm).
Multi-task personalized FL/implicit MAML [4, 7]:

min
w,β1,...,βM∈Rd

FMX2(w, β) := 1
M

M∑
m=1

f ′
m(βm) + λ

2M

M∑
m=1

‖M−1
2w − βm‖2.

Multi-task FL [5] (generalization):

min
β1,...,βM∈Rd

FMT2(β) = 1
M

M∑
i=1

(
Λf ′

m(M−1
2w) + f ′

m(βm) + λ

2
‖βm − M−1

2w‖2
)

Adaptive personalized FL [3] (generalization):

min
w,β

1
M

M∑
m=1

(
Λf ′

m(M−1
2w) + f ′

m((1 − αm)βm + αmM−1
2w)

)
Explicit parameter sharing [2, 6]: minw,β

1
M

∑M
m=1 f ′

m(M−1
2w, βm).

Federated residual learning [1]:

min
w,β

FR(w, β) = 1
M

M∑
i=1

lm(Aw(w, xw
m), Aβ(βm, x

β
m)),

Experiments

Setup: 3 personalized FL objectives, each applied to 3 datasets: MNIST, KMINIST, and FMINST.

Model: multiclass logistic regression.

Goal of experiment: Demonstrate the effect of the M−1
2 rescaling of the w-space.
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