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Optimal Feature Selection in High-Dimensional
Discriminant Analysis

Mladen Kolar and Han Liu

Abstract— We consider the high-dimensional discriminant
analysis problem. For this problem, different methods have been
proposed and justified by establishing exact convergence rates for
the classification risk, as well as the �2 convergence results to the
discriminative rule. However, sharp theoretical analysis for the
variable selection performance of these procedures have not been
established, even though model interpretation is of fundamental
importance in scientific data analysis. This paper bridges the gap
by providing sharp sufficient conditions for consistent variable
selection using the sparse discriminant analysis. Through careful
analysis, we establish rates of convergence that are significantly
faster than the best known results and admit an optimal scaling
of the sample size n, dimensionality p, and sparsity level s in the
high-dimensional setting. Sufficient conditions are complemented
by the necessary information theoretic limits on the variable
selection problem in the context of high-dimensional discriminant
analysis. Exploiting a numerical equivalence result, our method
also establish the optimal results for the ROAD estimator and
the sparse optimal scoring estimator. Furthermore, we analyze
an exhaustive search procedure, whose performance serves as
a benchmark, and show that it is variable selection consistent
under weaker conditions. Extensive simulations demonstrating
the sharpness of the bounds are also provided.

Index Terms— High-dimensional statistics, discriminant
analysis, variable selection, optimal rates of convergence.

I. INTRODUCTION

WE CONSIDER the problem of binary classification
with high-dimensional features. More specifically,

given n data points, {(xi , yi ), i = 1, . . . , n}, sampled from a
joint distribution of (X, Y ) ∈ R

p×{1, 2}, we want to determine
the class label y for a new data point x ∈ R

p .
Let p1(x) and p2(x) be the density functions of X given

Y = 1 (class 1) and Y = 2 (class 2) respectively, and
the prior probabilities π1 = P(Y = 1), π2 = P(Y = 2).
Classical multivariate analysis theory shows that the
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Bayes rule classifies a new data point x to class 2 if and
only if

log

(
p2(x)

p1(x)

)
+ log

(
π2

π1

)
> 0. (I.1)

The Bayes rule usually serves as an oracle benchmark, since,
in practical data analysis, the class conditional densities
p2(x) and p1(x) are unknown and need to be estimated from
the data.

Throughout the paper, we assume that the class conditional
densities p1(x) and p2(x) are Gaussian. That is, we assume
that

X|Y = 1 ∼ N (μ1,�)

and X|Y = 2 ∼ N (μ2,�). (I.2)

This assumption leads us to linear discriminant analysis (LDA)
and the Bayes rule in (I.1) becomes

g(x; μ1,μ2,�) :=
{

2 if δ(x) > 0
1 otherwise,

where δ(x) = (
x − (μ1 + μ2)/2

)′
�−1μ + log (π2/π1) and

μ = μ2 − μ1. Theoretical properties of the plug-in rule
g(x; μ̂1, μ̂2, �̂), where (μ̂1, μ̂2, �̂) are sample estimates of
(μ1,μ2,�), have been well studied when the dimension p is
low [1].

In high-dimensions, the standard plug-in rule works poorly
and may even fail completely. For example, [2] shows that
the classical low dimensional normal-based linear discriminant
analysis is asymptotically equivalent to random guessing when
the dimension p increases at a rate comparable to the sample
size n. To overcome this curse of dimensionality, it is common
to impose certain sparsity assumptions on the model and then
estimate the high-dimensional discriminant rule using plug-in
estimators. The most popular approach is to assume that both
� and μ are sparse. Under this assumption, [22] proposes
to use a thresholding procedure to estimate � and μ and
then plug them into the Bayes rule. In a more extreme
case, [8], [23], [28] assume that � = I and estimate μ

using a shrinkage method. Another common approach is to
assume that �−1 and μ are sparse. Under this assumption,
[30] proposes the scout method which estimates �−1 using
a shrunken estimator. Though these plug-in approaches are
simple, they are not appropriate for conducting variable
selection in the discriminant analysis setting. As has been
elaborated in [1] and [11], for variable selection in high-
dimensional discriminant analysis, we need to directly impose
sparsity assumptions on the Bayes discriminant direction
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β = �−1μ instead of separately on � and μ. In particular, it
is assumed that β = (β ′

T , 0′)′ for T = {1, . . . , s}. Their key
observation comes from the fact that the Fisher’s discriminant
rule depends on � and μ only through the product �−1μ.
Furthermore, in the high-dimensional setting, it is scientifically
meaningful that only a small set of variables are relevant
to classification, which is equivalent to the assumption that
β is sparse. On a simple example of tumor classification,
[16] elaborates why it is scientifically more informative to
directly impose sparsity assumption on β instead of on μ

(For more details, see Section 2 of their paper). In addition,
[5] points out that the sparsity assumption on β is much
weaker than imposing sparsity assumptions �−1 and μ sepa-
rately. A number of authors have also studied classification in
this setting [5], [6], [10], [16], [31], [32].

In this paper, we adopt the assumption that β is sparse and
focus on analyzing the SDA (Sparse Discriminant Analysis)
proposed by [16]. This method estimates the discriminant
direction β (More precisely, they estimate a quantity that is
proportional to β.) and our focus will be on variable selection
consistency, that is, whether this method can recover the set T
with high probability. In a recent work, [15] proves that
the SDA estimator is numerically equivalent to the ROAD
estimator [10] and the sparse optimal scoring estimator [6].
By exploiting this result, our theoretical analysis provides a
unified theoretical justification for all these three methods.

A. Main Results

Let n1 = |{i : yi = 1}| and n2 = n−n1. The SDA estimator
is obtained by solving the following least squares optimization
problem

min
v∈Rp

1

2(n − 2)

∑
i∈[n]

(zi − v′(xi − x̄))2 + λ||v||1, (I.3)

where [n] denotes the set {1, . . . , n}, x̄ = n−1∑
i xi and the

vector z ∈ R
n encodes the class labels as zi = n2/n if yi = 1

and zi = −n1/n if yi = 2. Here λ > 0 is a regularization
parameter.

The SDA estimator in (I.3) uses an �1-norm penalty to
estimate a sparse v and avoid the curse of dimensionality.
[16] studied its variable selection property under a differ-
ent encoding scheme of the response zi . However, as we
show later, different coding schemes do not affect the results
(see Appendix C). When the regularization parameter λ is set
to zero, the SDA estimator reduces to the classical Fisher’s
discriminant rule.

The main focus of the paper is to sharply characterize the
variable selection performance of the SDA estimator. From a
theoretical perspective, unlike the high dimensional regression
setting where sharp theoretical results exist for prediction,
estimation, and variable selection consistency, most existing
theories for high-dimensional discriminant analysis are either
on estimation consistency or risk consistency, but not on vari-
able selection consistency (see [5], [10], [22]). [16] provides
a variable selection consistency result for the SDA estimator
in (I.3). However, as we will show later, their obtained
scaling in terms of (n, p, s) is not optimal. Though some

theoretical analysis of the �1-norm penalized M-estimators
exists (see [21], [26]), these techniques are not applicable
to analyze the estimator given in (I.3). In high-dimensional
discriminant analysis the underlying statistical model is dif-
ferent from that of the regression analysis. At a high level, to
establish variable selection consistency of the SDA estimator,
we characterize the Karush-Kuhn-Tucker (KKT) conditions
for the optimization problem in (I.3). Unlike the �1-norm
penalized least squares regression, which directly estimates the
regression coefficients, the solution to (I.3) is a quantity that
is only proportional to the Bayes rule’s direction. To analyze
such scaled estimators, we need to resort to different tech-
niques and utilize sophisticated multivariate analysis results
to characterize the sampling distributions of the estimated
quantities. More specifically, we provide sufficient conditions
under which the SDA estimator is variable selection consis-
tent with a significantly improved scaling compared to that
obtained by [16]. In addition, we complement these sufficient
conditions with information theoretic limitations on recovery
of the feature set T . In particular, we provide lower bounds
on the sample size and the signal level needed to recover the
set of relevant variables by any procedure. We identify the
family of problems for which the estimator (I.3) is variable
selection optimal. To provide more insights into the problem,
we analyze an exhaustive search procedure, which requires
weaker conditions to consistently select relevant variables.
This estimator, however, is not practical and serves only as a
benchmark. The obtained variable selection consistency result
also enables us to establish risk consistency for the SDA
estimator. In addition, [15] shows that the SDA estimator
is numerically equivalent to the ROAD estimator proposed
by [10] and [32] and the sparse optimal scoring estimator
proposed by [6]. Therefore, the results provided in this paper
also apply to those estimators. Some of the main results of
this paper are summarized below.

Let v̂SDA denote the minimizer of (I.3). We show that if the
sample size

n ≥ C

(
max
a∈N

σa|T
)

�−1
min(�T T )s log ((p − s) log(n)), (I.4)

where C is a fixed constant which does not scale with n, p
and s, σa|T = σaa − �aT �−1

T T �T a , and �min(�) denotes
the minimum eigenvalue of �, then the estimated vector
v̂SDA has the same sparsity pattern as the true β, thus
establishing variable selection consistency (or sparsistency)
for the SDA estimator. This is the first result that proves
that consistent variable selection in the discriminant analysis
can be done under a similar theoretical scaling as variable
selection in the regression setting (in terms of n, p and s).
To prove (I.4), we impose conditions that min j∈T |β j | is not
too small and ||�NT �−1

T T sign(βT )||∞ ≤ 1−α with α ∈ (0, 1),
where N = [p]\T. The latter one is the irrepresentable
condition, which is commonly used in the �1-norm penalized
least squares regression problem [19], [26], [35], [36]. Let
βmin be the magnitude of the smallest absolute value of the
non-zero component of β. Our analysis of information theo-
retic limitations reveals that, whenever n < C1β

−2
min log(p − s),

no procedure can reliably recover the set T. In particular, under
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certain regimes, we establish that the SDA estimator is optimal
for the purpose of variable selection. The analysis of the
exhaustive search decoder reveals a similar result. However,
the exhaustive search decoder does not need the irrepresentable
condition to be satisfied by the covariance matrix. Thorough
numerical simulations are provided to demonstrate the sharp-
ness of our theoretical results.

In a preliminary work, [13] presented some variable selec-
tion consistency results related to the ROAD estimator under
the assumption that π1 = π2 = 1/2. However, it is
hard to directly compare their analysis with that of [16] to
understand why an improved scaling is achievable, since the
ROAD estimator is the solution to a constrained optimization
while the SDA estimator is the solution to an unconstrained
optimization. This paper analyzes the SDA estimator and
is directly comparable with the result of [16]. As we will
discuss later, our analysis attains better scaling due to a more
careful characterization of the sampling distributions of several
scaled statistics. In contrast, the analysis in [16] hinges on
the sup-norm control of the deviation of the sample mean
and covariance to their population quantities, which is not
sufficient to obtain the optimal rate. Using the numerical
equivalence between the SDA and the ROAD estimator, the
theoretical results of this paper also apply on the ROAD
estimator. In addition, we also study an exhaustive search
decoder and information theoretic limits on the variable selec-
tion in high-dimensional discriminant analysis. Furthermore,
we provide discussions on risk consistency and approximate
sparsity, which shed light on future investigations.

The rest of this paper is organized as follows. In the rest of
this section, we introduce some more notation. In §II, we study
sparsistency of the SDA estimator. An information theoretic
lower bound is given in §III. We characterize the behavior
of the exhaustive search procedure in §IV. Consequences of
our results are discussed in more details in §V. Numerical
simulations that illustrate our theoretical findings are given in
§VI. We conclude the paper with a discussion and some results
on the risk consistency and approximate sparsity in §VII.
Technical results and proofs are deferred to the appendix and
online supplementary document.

B. Notation

We denote [n] to be the set {1, . . . , n}. Let T ⊆ [p] be
an index set, we denote βT to be the subvector containing
the entries of the vector β indexed by the set T, and XT

denotes the submatrix containing the columns of X indexed
by T. Similarly, we denote AT T to be the submatrix of A with
rows and columns indexed by T. For a vector a ∈ R

n , we
denote supp(a) = { j : a j 	= 0} to be the support set. We also
use ||a||q , q ∈ [1,∞), to be the �q -norm defined as ||a||q =
(
∑

i∈[n] |ai |q)1/q with the usual extensions for q ∈ {0,∞},
that is, ||a||0 = |supp(a)| and ||a||∞ = maxi∈[n] |ai |. For a
matrix A ∈ R

n×p , we denote |||A|||∞ = maxi∈[n]
∑

j∈[p] |ai j |
the �∞ operator norm. For a symmetric positive definite matrix
A ∈ R

p×p we denote �min(A) and �max(A) to be the smallest
and largest eigenvalues, respectively. We also represent the
quadratic form ||a||2A = a′Aa for a symmetric positive definite

matrix A. We denote In to be the n×n identity matrix and 1n to
be the n × 1 vector with all components equal to 1. For two
sequences {an} and {bn}, we use an = O(bn) to denote that
an < Cbn for some finite positive constant C . We also denote
an = O(bn) to be bn � an . If an = O(bn) and bn = O(an),
we denote it to be an 
 bn . The notation an = o(bn) is used
to denote that anb−1

n → 0.

II. SPARSISTENCY OF THE SDA ESTIMATOR

In this section, we provide sharp sparsistency analysis for
the SDA estimator defined in (I.3). Our analysis decomposes
into two parts: (i) We first analyze the population version of
the SDA estimator in which we assume that �, μ1, and μ2
are known. The solution to the population problem provides
us insights on the variable selection problem and allows us
to write down sufficient conditions for consistent variable
selection. (ii) We then extend the analysis from the population
problem to the sample version of the problem in (I.3). For
this, we need to replace �, μ1, and μ2 by their corresponding
sample estimates �̂, μ̂1, and μ̂2. The statement of the main
result is provided in §II-B with an outline of the proof in §II-C.

A. Population Version Analysis of the SDA Estimator

We first lay out conditions that characterize the solution to
the population version of the SDA optimization problem.

Let X1 ∈ R
n1×p be the matrix with rows containing data

points from the first class and similarly define X2 ∈ R
n2×p

to be the matrix with rows containing data points from

the second class. We denote H1 = In1 − n−1
1 1n11′

n1
and

H2 = In2 −n−1
2 1n2 1′

n2
to be the centering matrices. We define

the following quantities

μ̂1 = n−1
1

∑
i:yi =1

xi = n−1
1 X′

11n1,

μ̂2 = n−1
2

∑
i:yi =2

xi = n−1
2 X′

21n2 ,

μ̂ = μ̂2 − μ̂1,

S1 = (n1 − 1)−1X′
1H1X1,

S2 = (n2 − 1)−1X′
2H2X2,

S = (n − 2)−1((n1 − 1)S1 + (n2 − 1)S2).

With this notation, observe that the optimization problem
in (I.3) can be rewritten as

min
v∈Rp

1

2
v′
(

S + n1n2

n(n − 2)
μ̂μ̂′

)
v − n1n2

n(n − 2)
v′μ̂ + λ||v||1,

where we have dropped terms that do not depend on v.
Therefore, we define the population version of the SDA
optimization problem as

min
w

1

2
w′ (� + π1π2μμ′)w − π1π2w′μ + λ||w||1, (II.1)

Let ŵ be the solution of (II.1). We are aiming to characterize
conditions under which the solution ŵ recovers the sparsity
pattern of β = �−1μ. Recall that T = supp(β) = {1, . . . , s}
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denotes the true support set and N = [p]\T, under the sparsity
assumption, we have

βT = �−1
T T μT and μN = �NT �−1

T T μT . (II.2)

We define βmin as

βmin = min
a∈T

|βa|.
The following theorem characterizes the solution to the
population version of the SDA optimization problem in (II.1).

Theorem 1: Let α ∈ (0, 1] be a constant and ŵ be the
solution to the problem in (II.1). Under the assumptions that

||�NT �−1
T T sign(βT )||∞ ≤ 1 − α, (II.3)

π1π2
1 + λ||βT ||1

1 + π1π2||βT ||2�T T

βmin > λ||�−1
T T sign(βT )||∞, (II.4)

we have ŵ = (ŵ′
T , 0′) with

ŵT = π1π2
1 + λ||βT ||1

1 + π1π2||βT ||2�T T

βT − λ�−1
T T sign(βT ). (II.5)

Furthermore, we have sign(ŵT ) = sign(βT ).
Equations (II.3) and (II.4) provide sufficient conditions

under which the solution to (II.1) recovers the true support.
The condition in (II.3) takes the same form as the irrep-
resentable condition commonly used in the �1-penalized
least squares regression problem [19], [26], [35], [36].
Equation (II.4) specifies that the smallest component of βT

should not be too small compared to the regularization para-
meter λ. In particular, let λ = λ0/(1 + π1π2||βT ||2�T T

) for
some λ0. Then (II.4) suggests that ŵT recovers the true support
of β as long as βmin ≥ λ0||�−1

T T sign(βT )||∞. Equation (II.5)
provides an explicit form for the solution ŵ, from which we
see that the SDA optimization procedure estimates a scaled
version of the optimal discriminant direction (when λ = 0).
Whenever λ 	= 0, ŵ is a biased estimator. However, such
estimation bias does not affect the recovery of the support
set T of β when λ is small enough.

We present the proof of Theorem 1, as the analysis of
the sample version of the SDA estimator will follow the
same lines. We start with the Karush-Kuhn-Tucker (KKT)
conditions for the optimization problem in (II.1):(

� + π1π2μμ′) ŵ − π1π2μ + λ̂z = 0 (II.6)

where ẑ ∈ ∂||ŵ||1 is an element of the subdifferential of ‖·‖1.
Let ŵT be defined in (II.5). We need to show that there

exists a ẑ such that the vector ŵ = (ŵ′
T , 0′)′, paired with ẑ,

satisfies the KKT conditions and sign(ŵT ) = sign(βT ). This
is achieved in two steps.

Step 1: Define the following oracle optimization problem

min
wT

1

2
w′

T

(
�T T + π1π2μT μ′

T

)
wT

−π1π2w′
T μT + λw′

T sign(βT ) (II.7)

and let w̃T be the solution to the above optimization problem.
In this step we establish that sign (w̃T ) = sign(βT ). This is
obvious under the conditions of Theorem 1 in the population
setting, but will be much more challenging to establish in the
sample version of the problem studied in the next section.

Step 2: Verify that (w̃′
T , 0′)′ is the solution to the optimiza-

tion problem in (II.1) under the assumptions of Theorem 1.
The following lemma achieves exactly that.

Lemma 1: Under the conditions of Theorem 1, we have that
ŵ = (w̃′

T , 0′) is the solution to the problem in (II.1), where
w̃T is defined as the minimizer of (II.7).

Theorem 1 immediately follows from the two steps above.
The above two steps will be used to prove results about

the sample version of the SDA estimator as well. Note that,
in practice, one cannot form the oracle optimization problem
and hence the two steps only provide a constructive way to
verify variable selection consistency of the SDA estimator.

The next theorem shows that the irrepresentable condition
in (II.3) is almost necessary for sign consistency, even if the
population quantities � and μ are known.

Theorem 2: Let ŵ be the solution to the problem in (II.1).
If we have sign(ŵT ) = sign(βT ), Then, there must be

||�NT �−1
T T sign(βT )||∞ ≤ 1.

The proof of this theorem follows similar argument as in
the regression settings in [17] and [19].

B. Sample Version Analysis of the SDA Estimator

In this section, we analyze the variable selection perfor-
mance of the sample version of the SDA estimator v̂ = v̂SDA

defined in (I.3). In particular, we will establish sufficient
conditions under which v̂ correctly recovers the support set
of β (i.e., we will derive conditions under which v̂ = (̂v′

T , 0′)′
and sign(̂vT ) = sign(βT )). The proof construction follows
the same line of reasoning as the population version analysis.
However, proving analogous results in the sample version of
the problem is much more challenging and requires careful
analysis of the sampling distribution of the scaled functionals
of Gaussian random vectors.

The following theorem is the main result that characterizes
the variable selection consistency of the SDA estimator.

Theorem 3: We assume that the condition in (II.3) holds.
We denote

Aβ :=
(

1 ∨ ||βT ||2�T T

)
.

Choosing λ =
(

1 + π1π2||βT ||2�T T

)−1
λ0 with

λ0 = Kλ0

√
π1π2

(
max
a∈N

σa|T
)

Aβ
log ((p − s) log(n))

n

where Kλ0 is a sufficiently large constant. Suppose that
βmin = mina∈T |βa| satisfies

βmin ≥ Kβ

(√(
max
a∈T

(
�−1

T T

)
aa

)
Aβ

log(s log(n))

n∨
λ0||�−1

T T sign(βT )||∞
)

(II.8)

for a sufficiently large constant Kβ . If

n ≥ Kπ1π2
(
maxa∈N σa|T

)
s log ((p − s) log(n))

�min(�T T )
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for some constant K , then v̂ = (̂v′
T , 0′)′ is the solution to the

optimization problem in (I.3), where

v̂T = n1n2

n(n − 2)

1 + λ||β̂T ||1
1 + n1n2

n(n−2) ||β̂T ||2ST T

β̂T − λS−1
T T sign(β̂T )

(II.9)

and β̂T = S−1
T T μ̂T , with probability at least 1 −O

(
log−1(n)

)
.

Furthermore, sign(̂vT ) = sign(βT ).
Theorem 3 is a sample version of Theorem 1 given in the

previous section. Compared to the population version result,
in addition to the irrepresentable condition and a lower bound
on βmin, we also need the sample size n to be large enough
for the SDA procedure to recover the true support set T with
high probability.

At the first sight, the conditions of the theorem look compli-
cated. To highlight the main result, we consider a case where
0 < c ≤ �min(�T T ) and

(
||βT ||2�T T

∨ ||�−1
T T sign(βT )||∞

)
≤

C̄ < ∞ for some constants c, C̄ . In this case, it is suffi-
cient that the sample size scales as n 
 s log(p − s) and
βmin � s−1/2. This scaling is of the same order as for the
Lasso procedure, where n � s log(p − s) is needed for correct
recovery of the relevant variables under the same assumptions
(see [26, Th. 3]). In §V, we provide more detailed explana-
tion of this theorem and complement it with the necessary
conditions given by the information theoretic limits.

Variable selection consistency of the SDA estimator was
studied by [16]. Let C = Var(X) denote the marginal
covariance matrix (note that, in general, C 	= �). Under
the assumption that |||CNT C−1

T T |||∞, |||C−1
T T |||∞ and ||μ||∞ are

bounded, [16] shows that the following conditions

i) lim
n→∞

s2 log p

n
= 0,

and i i) βmin �
√

s2 log(ps)

n
(II.10)

are sufficient for consistent support recovery of β. This is
suboptimal compared to our results. Inspection of the proof
given in [16] reveals that their result hinges on uniform control
of the elementwise deviation of Ĉ from C and μ̂ from μ.
These uniform deviation controls are too rough to establish
sharp results given in Theorem 3. In our proofs, we use
more sophisticated multivariate analysis tools to control the
deviation of β̂T from βT , that is, we focus on analyzing
the quantity S−1

T T μ̂T but instead of studying ST T and μ̂T

separately. The condition |||CNT C−1
T T |||∞ < 1, given in [16],

is equivalent to assuming that ||�NT �−1
T T a||∞ < 1 for all

a ∈ R
s such that ||a||∞ ≤ 1, since

CNT C−1
T T = �NT �−1

T T , (II.11)

as shown in Appendix D. On the other hand, Theorem 3
requires only that ||�NT �−1

T T a||∞ < 1 holds for a = sign(βT ).
Therefore, our irrepresentable condition is weaker than the one
in [16].

A semiparametric extension of the SDA estimator, termed
CODA, was studied in [11]. Under the scaling conditions
in (II.10), the CODA estimator is able to perform correct

variable selection. As we discussed above, these conditions
are suboptimal compared to our results. Inspection of the
proof in [11] reveals that the analysis of CODA hinges
on the uniform control of the elementwise deviation of the
sample mean and a rank-based covariance estimator from their
population counterparts, which are too crude for establishing
sharp scaling results. Furthermore, the proof technique used to
establish results of Theorem 3 heavily relies on the assumption
that the class conditional distribution of X is a multivariate
Gaussian. This assumption allows us to use results about
the distribution of the inverse of a block of the covariance
matrix established in [4] (see, for example, proofs of Lemma 3
and Lemma 7 in the Appendix). Estimator of the covariance
matrix used in the CODA estimator is based on the non-linear
transformation of the Kendall’s tau matrix for which we do
not have such results. Therefore, improving the results of the
CODA estimator would require a different proof strategy.

The proof of Theorem 3 is outlined in the next subsection.

C. Proof of Sparsistency of the SDA Estimator

The proof of Theorem 3 follows the same strategy as the
proof of Theorem 1. More specifically, we only need to show
that there exists a subdifferential of ‖ · ‖1 such that the solu-
tion v̂ to the optimization problem in (I.3) satisfies the sample
version KKT condition (given below in (II.12) and (II.13))
with high probability. For this, we proceed in two steps. In the
first step, we assume that the true support set T is known and
solve an oracle optimization problem (given below in (II.14)),
which exploits the knowledge of T . Let ṽT be the solution to
the oracle optimization problem. In the second step, we show
that there exists a dual variable from the subdifferential of ‖·‖1
such that the vector (̃v′

T , 0′)′ satisfies the KKT conditions for
the original optimization problem given in (I.3). This proves
that v̂ = (̃v′

T , 0′)′ is a global minimizer of the problem in (I.3).
Finally, we show that v̂ is a unique solution to the optimization
problem in (I.3) with high probability.

Let T̂ = supp (̂v) be the support of a solution v̂ to the
optimization problem in (I.3) and N̂ = [p]\T̂ . Any solution
to (I.3) needs to satisfy the following Karush-Kuhn-Tucker
(KKT) conditions(

ST̂ T̂ + n1n2

n(n − 2)
μ̂T̂ μ̂′̂

T

)
v̂T̂ = n1n2

n(n − 2)
μ̂T̂ − λ sign(̂vT̂ ),

(II.12)∣∣∣∣
∣∣∣∣
(

SN̂ T̂ + n1n2

n(n − 2)
μ̂N̂ μ̂′̂

T

)
v̂T̂ − n1n2

n(n − 2)
μ̂N̂

∣∣∣∣
∣∣∣∣∞ ≤ λ.

(II.13)

We construct a solution v̂ = (̂v′
T , 0′)′ to (I.3) and show that it

is unique with high probability.
Step 1: We consider the following oracle optimization

problem

ṽT = arg min
v∈Rs

1

2(n − 2)

∑
i∈[n]

(zi − v′(xi,T − x̄T ))2

+λv′ sign(βT ). (II.14)

The optimization problem in (II.14) is related to the one
in (I.3), however, the solution is calculated only over the
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subset T and ||vT ||1 is replaced with v′
T sign(βT ). Simple

algebra gives

ṽT = n1n2

n(n − 2)

1 + λβ̂T
′
sign(βT )

1 + n1n2
n(n−2) ||β̂T ||2ST T

β̂T − λS−1
T T sign(βT ).

(II.15)

Recall that β̂T = S−1
T T μ̂T . The solution ṽT is unique, since the

matrix ST T is positive definite with probability 1.
The following result establishes that the solution to

the auxiliary oracle optimization problem (II.14) satisfies
sign(̃vT ) = sign(βT ) with high probability, under the
conditions of Theorem 3.

Lemma 2: Under the assumption that the conditions of
Theorem 3 are satisfied, sign(̃vT ) = sign(βT ) and sign(β̂T ) =
sign(βT ) with probability at least 1 − O

(
log−1(n)

)
.

The proof Lemma 2 relies on a careful characteriza-
tion of the deviation of the following quantities μ̂′

T S−1
T T μ̂T ,

μ̂′
T S−1

T T sign(β̂T ), S−1
T T μ̂T and S−1

T T sign(β̂T ) from their
expected values. Using Lemma 2, we have that ṽT defined
in (II.15) satisfies ṽT = v̂T .

Step 2: The following lemma shows that v̂ = (̃v′
T , 0′)′ is a

solution to (I.3) under the conditions of Theorem 3.
Lemma 3: Assuming that the conditions of Theorem 3 are

satisfied, we have that v̂ = (̃v′
T , 0′)′ is a solution to (I.3) with

probability at least 1 − O
(
log−1(n)

)
.

The proof of Theorem 3 will be complete once we show
that v̂ = (̃v′

T , 0′)′ is the unique solution. We proceed as in
[26, Proof of Lemma 1]. Let v̌ be another solution to the
optimization problem in (I.3) satisfying the KKT condition(

S + n1n2

n(n − 2)
μ̂μ̂′

)
v̌ − n1n2

n(n − 2)
μ̂ + λ̂q = 0

for some subgradient q̂ ∈ ∂||v̌||1. Given the subgradient q̂, any
optimal solution needs to satisfy the complementary slackness
condition q̂′v̌ = ||v̌||1, which holds only if v̌ j = 0 for all
j such that |̂q j | < 1. In the proof of Lemma 3, we will
establish that |̂q j | < 1 for j ∈ N (see (A.3)). Therefore, any
solution to (I.3) has the same sparsity pattern as v̂. Uniqueness
now follows since ṽT is the unique solution of (II.14) when
constrained on the support set T.

III. LOWER BOUND

Theorem 3 provides sufficient conditions for the SDA
estimator to reliably recover the true set T of nonzero elements
of the discriminant direction β. In this section, we provide
results that are of complementary nature. More specifically,
we provide necessary conditions that must be satisfied for
any procedure to succeed in reliable estimation of the support
set T. Thus, we focus on the information theoretic limits in
the context of high-dimensional discriminant analysis.

We denote � to be an estimator of the support set T, that is,
any measurable function that maps the data {xi , yi }i∈[n] to a
subset of {1, . . . , p}. Let θ = (μ1,μ2,�) be the problem
parameters and  be the parameter space. We define the
maximum risk, corresponding to the 0/1 loss, as

R(�,) = sup
θ∈

Pθ

[
�({xi , yi }i∈[n]) 	= T (θ)

]

where Pθ denotes the joint distribution of {xi , yi }i∈[n] under
the assumption that π1 = π2 = 1

2 , and T (θ) = supp(β)
(recall that β = �−1(μ2 − μ1)). Let M(s,Z) be the class
of all subsets of the set Z of cardinality s. We consider the
parameter space

(�, τ, s) =
⋃

ω∈M(s,[p])

{
θ = (μ1,μ2,�) ∈ Fω,τ

}

with (μ1,μ2,�) ∈ Fω,τ if

β = �−1(μ2 − μ1) ∈
{ |βa| ≥ τ if a ∈ ω,

βa = 0 if a 	∈ ω

where τ > 0 determines the signal strength. The minimax risk
is defined as

inf
�

R(�,(�, τ, s)).

In what follows we provide a lower bound on the minimax
risk. Before stating the result, we introduce the following three
quantities that will be used to state Theorem 4

ϕclose(�)

= min
T ∈M(s,[p])

min
u∈T

1

p − s

∑
v∈[p]\T

(�uu + �vv − 2�uv ),

(III.1)

ϕfar(�)

= min
T ∈M(s,[p])

1

��

(p−s
s

) ∑
T ′∈M(s,[p]\T )

1′�T ∪T ′,T ∪T ′1, (III.2)

and

τmin = 2 · max

⎛
⎝
√

log
(p−s

s

)
nϕfar(�)

,

√
log(p − s + 1)

nϕclose(�)

⎞
⎠.

The first quantity measures the difficulty of distinguishing two
close support sets T1 and T2 that differ in only one position.
The second quantity measures the effect of a large number of
support sets that are far from the support set T. The quantity
τmin is a threshold for the signal strength. Our main result on
minimax lower bound is presented in Theorem 4.

Theorem 4: For any τ < τmin, there exists some constant
C > 0, such that

inf
�

sup
θ∈(�,τ,s)

Pθ

[
�({xi , yi }i∈[n]) 	= T (θ)

] ≥ C > 0.

Theorem 4 implies that for any estimating procedure,
whenever τ < τmin, there exists some distribution para-
metrized by θ ∈ (�, τ, s) such that the probability of
incorrectly identifying the set T (θ) is strictly bounded away
from zero. To better understand the quantities ϕclose(�) and
ϕfar(�), we consider a special case when � = I. In this case
both quantities simplify a lot and we have ϕclose(I) = 2 and
ϕfar(I) = 2s. From Theorem 4 and Theorem 3, we see that the
SDA estimator is able to recover the true support set T using
the optimal number of samples (up to an absolute constant)
over the parameter space

(�, τmin, s) ∩ {θ : ||βT ||2�T T
≤ M}

where M is a fixed constant and �min(�T T ) is bounded from
below. This result will be further illustrated by numerical
simulations in §VI.
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IV. EXHAUSTIVE SEARCH DECODER

In this section, we analyze an exhaustive search procedure,
which evaluates every subset T ′ of size s and outputs the
one with the best score. Even though the procedure cannot be
implemented in practice, it is a useful benchmark to compare
against and it provides deeper theoretical insights into the
problem.

For any subset T ′ ⊂ [p], we define

f (T ′) = min
u∈R|T ′|

{
u′̂ST ′T ′u : u′μ̂T ′ = 1

)

= min
T ′⊂[p] : |T ′|=s

1

μ̂′
T ′S−1

T ′T ′μ̂′
T ′

.

The exhaustive search procedure outputs the support set T̂ that
minimizes f (T ′) over all subsets T ′ of size s,

T̂ = argmin
T ′⊂[p] : |T ′|=s

f (T ′)

= argmax
T ′⊂[p] : |T ′|=s

μ̂′
T ′S−1

T ′T ′μ̂T ′ .

Define g(T ′) = μ̂′
T ′S−1

T ′T ′μ̂T ′ . In order to show that the exhaus-
tive search procedure identifies the correct support set T, we
need to show that with high probability g(T ) > g(T ′) for any
other set T ′ of size s. The next result gives sufficient conditions
for this to happen. We first introduce some additional notation.
Let A1 = T ∩ T ′, A2 = T \T ′ and A3 = T ′\T . We define the
following quantities

a1(T ′) = μ′
A1

�−1
A1 A1

μA1,

a2(T ′) = μ′
A2 |A1

�−1
A2 A2|A1

μA2 |A1,

a3(T ′) = μ′
A3|A1

�−1
A3 A3|A1

μA3|A1,

where μA2|A1 = μA2 − �A2 A1 �
−1
A1 A1

μA1 and �A2 A2 |A1 =
�A2 A2 − �A2 A1�

−1
A1 A1

�A2 A1 . The quantities μA3 |A1 and
�A3 A3|A1 are defined similarly.

Theorem 5: Assuming that for all T ′ ⊆ [p] with |T ′| = s
and T ′ 	= T the following holds

a2(T ′) − (1 + C1
√

�n,p,s,k
)

a3(T ′)

≥ C2

√
(1 ∨ a1(T ′)) a2(T ′)�n,p,s,k

+ C3
(
1 ∨ a1(T ′)

)
�n,p,s,k, (IV.1)

where |T ′ ∩ T | = k, �n,p,s,k = n−1 log
((p−s

s−k

)(s
k

)
s log(n)

)
and C1, C2, C3 are constants independent of the problem
parameters, we have P[T̂ 	= T ] = O(log−1(n)).

The condition in (IV.1) allows the exhaustive search decoder
to distinguish between the sets T and T ′ with high probability.
Note that the Mahalanobis distance decomposes as g(T ) =
μ̂′

A1
S−1

A1 A1
μ̂A1 +μ̃′

A2|A1
S−1

A2 A2|A1
μ̃A2|A1 where μ̃A2|A1 = μ̂A2 −

SA2 A1 S−1
A1 A1

μ̂A1 and SA2 A2|A1 = SA2 A2 − SA2 A1 S−1
A1 A1

SA1 A2 ,
and similarly g(T ′) = μ̂′

A1
S−1

A1 A1
μ̂A1 +μ̃′

A3|A1
S−1

A3 A3|A1
μ̃A3|A1 .

Therefore g(T ) > g(T ′) if μ̃′
A2 |A1

S−1
A2 A2|A1

μ̃A2 |A1 > μ̃′
A3 |A1

S−1
A3 A3|A1

μ̃A3|A1 . With infinite amount of data, it would be
sufficient that a2(T ′) > a3(T ′). However, in the finite-
sample setting, condition (IV.1) ensures that the separation
is big enough. If XT and XN are independent, then the

expression (IV.1) can be simplified by dropping the second
term on the left hand side.

Compared to the result of Theorem 3, the exhaustive search
procedure does not require the covariance matrix to satisfy the
irrepresentable condition given in (II.3). The SDA estimator
defined in (I.3) uses the �1 penalty to find a sparse v̂. In place
of the �1 penalty one could use the SCAD [9] or the MCP
penalty [33]. These nonconvex penalties interpolate between
the �1 and �0 penalties [18] and do not require as strong
assumptions on the covariance matrix � as the �1 penalty.
However, finding the global solution of a resulting noncon-
vex objective is challenging. In the regression setting, these
penalties allow one to establish variable selection consistency
result without the need of irrepresentable condition. However,
most of these results are only shown for the global minimizer
(see [34] for a recent overview) and it is not clear how
this global minimizer can be obtained using polynomial-time
algorithm. Alternatively, one can study a particular algorithm
and the local solution obtained by this algorithm, however, the
analysis of these algorithm crucially depend on the correctness
of the underlying regression model (see [27], [29]). Such a
regression setting is fundamentally different from the discrim-
inant analysis model we are studying in this paper. The study
of nonconvex penalty on SDA estimator is beyond the scope
of this paper.

V. IMPLICATIONS OF OUR RESULTS

In this section, we give some implications of our results.
We start with the case when the covariance matrix � = I.
The same implications hold for other covariance matrices that
satisfy �min(�) ≥ C > 0 for some constant C independent of
(n, p, s). We first illustrate a regime where the SDA estimator
is optimal for the problem of identifying the relevant variables.
This is done by comparing the results in Theorem 3 to those
of Theorem 4. Next, we point out a regime where there
exists a gap between the sufficient and necessary conditions
of Theorem 4 for both the exhaustive search decoder and
the SDA estimator. Throughout the section, we assume that
s = o(min(n, p)).

When � = I, we have that βT = μT . Let μ = mina∈T |μa|.
If

μ �
√

log(p − s)

n
,

then no procedure can reliably recover the support, according
to Theorem 4. We will compare this bound with sufficient
conditions given in Theorems 3 and 5.

First, we assume that ||μT ||22 = C for some constant C .

If n � s log(p − s), then μ �
√

log(p−s)
n is sufficient

for the SDA estimator to consistently recover the relevant
variables, using Theorem 3. Therefore, in this regime, the
sufficient conditions for the SDA estimator to reliably recover
the support match the necessary condition.

Next, we investigate the condition in (IV.1), which is
sufficient for the exhaustive search procedure to identify the
set T. Let T ′ ⊂ [p] be a subset of size s. Then, using the
notation of Section IV,

a1(T ′) = ||μA1 ||22, a2(T ′) = ||μA2 ||22, and a3(T ′) = 0.
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Now, if |T ′ ∩ T | = s − 1 and T ′ does not contain the smallest

component of μT , (IV.1) simplifies to μ �
√

log(p−s)
n , since

||μA1 ||22 ≤ ||μT ||22 = C . This shows that both the SDA
estimator and the exhaustive search procedure can reliably
detect signals at the information theoretic limit in the case
when the norm of the vector μT is bounded and μ � s−1/2.
However, when the norm of the vector μT is not bounded
by a constant, for example, μ = C ′ for some constant C ′,
Theorem 4 gives that at least n � log(p − s) data points are
needed, while n � s log(p−s) is sufficient for correct recovery
of the support set T. This situation is analogous to the known
bounds on the support recovery in the sparse linear regression
setting [25].

Next, we show that the largest eigenvalue of a covariance
matrix � can diverge, without affecting the sample size
required for successful recovery of the support set T. Let
� = (1 − γ )Ip + γ 1p1′

p for γ ∈ [0, 1). We have �max(�) =
1 + (p − 1)γ , which diverges to infinity for any fixed γ
as p → ∞. Let T = [s] and set βT = β1T . This gives
μT = β(1 + γ (s − 1))1T and μN = γβs1N . A simple
application of the matrix inversion formula gives

�−1
T T = (1 − γ )−1Is − γ

(1 − γ )(1 + γ (s − 1))
1T 1′

T .

A lower bound on β is obtained from Theorem 4 as

β ≥
√

2
1−γ

log(p−s)
n . This follows from a simple calcula-

tion that establishes ϕclose(�) = 2(1 − γ ) and ϕfar(�) =
2s(1 − γ ) + (2s)2γ.

Sufficient conditions for the SDA estimator follow from
Theorem 3. A straightforward calculation shows that

σa|T = (1 − γ )(1 + γ s)

1 + γ (s − 1)
,

�min(�) = 1 − γ,

and ||�−1
T T sign(βT )||∞ = 1

1 + γ (s − 1)
.

This gives that β ≥ K
√

log(p−s)
(1−γ )n (for K large enough)

is sufficient for recovering the set T, assuming that
||βT ||2�T T

= O(1). This matches the lower bound, showing
that the maximum eigenvalue of the covariance matrix � does
not play a role in characterizing the behavior of the SDA
estimator.

VI. SIMULATION RESULTS

In this section, we conduct several simulations to illus-
trate the finite-sample performance of our results. Theorem 3
describes the sample size needed for the SDA estimator to
recover the set of relevant variables. We consider the following
three scalings for the size of the set T:

1) fractional power sparsity, where s = �2 p0.45�
2) sublinear sparsity, where s = �0.4 p/ log(0.4 p)�, and
3) linear sparsity, where s = �0.4 p�.

For all three scaling regimes, we set the sample size as

n = θs log(p)

where θ is a control parameter that is varied. We investigate
how well can the SDA estimator recovers the true support
set T as the control parameter θ varies.

We set P[Y = 1] = P[Y = 2] = 1
2 , X|Y = 1 ∼ N (μ,�)

and without loss of generality X|Y = 2 ∼ N (0,�).
We specify the vector μ by choosing the set T of size
|T | = s randomly, and for each a ∈ T setting μa equal to +1
or −1 with equal probability, and μa = 0 for all components
a 	∈ T . We specify the covariance matrix � as

� =
(

�T T 0
0 Ip−s

)

so that β = �−1μ = (β ′
T , 0′)′. We consider three cases for

the block component �T T :
1) identity matrix, where �T T = Is ,
2) Toeplitz matrix, where �T T = [�ab]a,b∈T and

�ab = ρ|a−b| with ρ = 0.1, and
3) equal correlation matrix, where �ab = ρ when a 	= b

and σaa = 1.
Finally, we set the penalty parameter λ = λSDA as

λSDA = 0.3 × (1 + ||βT ||2�T T
/4
)−1

×
√(

1 ∨ ||βT ||2�T T

) log (p − s)

n
for all cases. We also tried several different constants and
found that our main results on high dimensional scalings are
insensitive to the choice of this constant. For this choice of λ,
Theorem 3 predicts that the set T will be recovered correctly.
For each setting, we report the Hamming distance between the
estimated set T̂ and the true set T,

h(T̂ , T ) = |(T̂ \T ) ∪ (T\T̂ )|,
averaged over 200 independent simulation runs.

Figure 1 plots the Hamming distance against the control
parameter θ , or the rescaled number of samples. Here
the Hamming distance between T̂ and T is calculated by
averaging 200 independent simulation runs. There are
three subfigures corresponding to different sparsity regimes
(fractional power, sublinear and linear sparsity), each of
them containing three curves for different problem sizes
p ∈ {100, 200, 300}. Vertical line indicates a threshold para-
meter θ at which the set T is correctly recovered. If the
parameter is smaller than the threshold value, the recovery is
poor. Figure 2 and Figure 3 show results for two other cases,
with �T T being a Toeplitz matrix with parameter ρ = 0.1
and the equal correlation matrix with ρ = 0.1. To illustrate
the effect of correlation, we set p = 100 and generate the
equal correlation matrices with ρ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9}.
Results are given in Figure 4.

VII. DISCUSSION

In this paper, we address the problem of variable selection in
high-dimensional discriminant analysis problem. The problem
of reliable variable selection is important in many scientific
areas where simple models are needed to provide insights
into complex systems. Existing research has focused primarily
on establishing results for prediction consistency, ignoring
feature selection. We bridge this gap, by analyzing the variable
selection performance of the SDA estimator and an exhaustive
search decoder. We establish sufficient conditions required for
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Fig. 1. (The SDA Estimator) Plots of the rescaled sample size n/(s log(p)) versus the Hamming distance between T̂ and T for identity covariance
matrix � = Ip (averaged over 200 simulation runs). Each subfigure shows three curves, corresponding to the problem sizes p ∈ {100, 200, 300}.
The first subfigure corresponds to the fractional power sparsity regime, s = 2p0.45, the second subfigure corresponds to the sublinear sparsity regime
s = 0.4p/ log(0.4p), and the third ssubfigure corresponds to the linear sparsity regime s = 0.4p. Vertical lines denote a scaled sample size at which the
support set T is recovered correctly.

Fig. 2. (The SDA Estimator) Plots of the rescaled sample size n/(s log(p)) versus the Hamming distance between T̂ and T for the Toeplitz covariance
matrix �T T with ρ = 0.1 (averaged over 200 simulation runs). Each subfigure shows three curves, corresponding to the problem sizes p ∈ {100, 200, 300}.
The first subfigure corresponds to the fractional power sparsity regime, s = 2p0.45, the second subfigure corresponds to the sublinear sparsity regime
s = 0.4p/ log(0.4p), and the third subfiguren corresponds to the linear sparsity regime s = 0.4p. Vertical lines denote a scaled sample size at which the
support set T is recovered correctly.

Fig. 3. (The SDA Estimator) Plots of the rescaled sample size n/(s log(p)) versus the Hamming distance between T̂ and T for equal correlation
matrix �T T with ρ = 0.1 (averaged over 200 simulation runs). Each subfigure shows three curves, corresponding to the problem sizes p ∈ {100, 200, 300}.
The first subfigure corresponds to the fractional power sparsity regime, s = 2p0.45, the second subfigure corresponds to the sublinear sparsity regime
s = 0.4p/ log(0.4p), and the third subfigure corresponds to the linear sparsity regime s = 0.4p. Vertical lines denote a scaled sample size at which the
support set T is recovered correctly.

successful recovery of the set of relevant variables for these
procedures. This analysis is complemented by analyzing the
information theoretic limits, which provide necessary condi-
tions for variable selection in discriminant analysis. From these
results, we are able to identify the class of problems for which
the computationally tractable procedures are optimal. In this
section, we discuss some implications and possible extensions
of our results.

A. Theoretical Justification of the ROAD and
Sparse Optimal Scaling Estimators

In a recent work, [15] shows that the SDA estimator
is numerically equivalent to the ROAD estimator proposed
by [10] and [32] and the sparse optimal scoring estimator
proposed by [6]. More specifically, all these three methods
have the same regularization paths up to a constant scaling.
This result allows us to apply the theoretical results in this
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Fig. 4. (The SDA Estimator) Plots of the rescaled sample size n/(s log(p))
versus the Hamming distance between T̂ and T for equal correlation
matrix �T T with ρ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9} (averaged over 200 simulation
runs). The ambient dimension is set as p = 100. The first subfigure corre-
sponds to the fractional power sparsity regime, s = 2p0.45 and the second
subfigure corresponds to the sublinear sparsity regime s = 0.4p/ log(0.4p).

paper to simultaneously justify the optimal variable selection
performance of the ROAD and sparse optimal scaling esti-
mators. The focus of [10] was on establishing a bound on
the misclassification error of the ROAD estimator. Our results
provide complimentary insights for the ROAD estimator. From
[2, Th. 2], it follows that the ROAD estimator selects the true
support consistently under a stringent condition on βmin, which
requires (II.10) to hold. Therefore, our analysis improves the
previous result and shows that the ROAD estimator needs only
βmin 
 √

log(p − s)/n to hold in order for the true support
to be consistently identified.

B. Risk Consistency

The results of Theorem 3 can be used to establish risk
consistency of the SDA estimator. Consider the following
classification rule

ŷ(x) =
{

1 if g(x; v̂) = 1
2 otherwise

where g(x; v̂) = I
[̂
v′(x − (μ̂1 + μ̂2)/2) > 0

]
with v̂ = v̂SDA.

Under the assumption that β = (βT
′, 0′)′, the risk (or the

error rate) of the Bayes rule defined in (I.1) is

Ropt = �

(
−
√

μ′
T �−1

T T μT /2

)
, where � is the cumulative

distribution function of a standard Normal distribution.
We will compare the risk of the SDA estimator against this
Bayes risk.

Recall the setting introduced in §I-A, conditioning on the
data points {xi , yi }i∈[n], the conditional error rate is

R(ŵ) = 1

2

∑
i∈{1,2}

�

(−v̂′(μi − μ̂i ) − v̂′μ̂/2√
v̂′�v̂

)
.

Let rn = λ||βT ||1 and qn = sign(βT )′�T T sign(βT ). We have
the following result on risk consistency.

Corollary 1: Let v̂ = v̂SDA. We assume that the conditions
of Theorem 3 hold with

n 
 K (n)

(
max
a∈N

σa|T
)

�−1
min(�T T ) × s log ((p − s) log(n)),

where K (n) could potentially scale with n, and ||βT ||2�T T
≥

C > 0. Furthermore, we assume that rn
n→∞−−−→ 0. Then

R(ŵ) = �

⎛
⎜⎜⎜⎜⎝− ||βT ||�T T (1 + OP (rn))

2

√
1 + OP

(
rn ∨ λ2

0qn

||βT ||2�T T

)

⎞
⎟⎟⎟⎟⎠.

First, note that

||βT ||1/||βT ||�T T = o
(√

K (n)s/�min(�T T )
)

is sufficient for rn → 0 as n → ∞. Under the conditions
of Theorem 1, we have that ||βT ||2�T T

/
(
λ2

0qn
) =

O (K (n)s/ (�min(�T T )qn)) = O (K (n)). Therefore, if
K (n)

n→∞−−−→ ∞ and K (n) ≥ Cs||βT ||2�T T
/(

�min(�T T )||βT ||21
)

we have

R(ŵ) = �

(
−||βT ||�T T

2
(1 + OP (rn))

)

and R(ŵ) − Ropt →P 0. If in addition

||βT ||�T T ||βT ||1 = o
(√

K (n)s/�min(�T T )
)
,

then R(ŵ)/Ropt →P 1, using [22, Lemma 1].
The above discussion shows that the conditions of

Theorem 3 are sufficient for establishing risk consistency.
We conjecture that substantially less restrictive conditions are
needed to establish risk consistency results. Exploring such
weaker conditions is beyond the scope of this paper.

C. Approximate Sparsity

Thus far, we were discussing estimation of discriminant
directions that are exactly sparse. However, in many appli-
cations it may be the case that the discriminant direction
β = (βT

′,β ′
N )′ = �−1μ is only approximately sparse, that

is, βN is not equal to zero, but is small. In this section, we
briefly discuss the issue of variable selection in this context.
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In the approximately sparse setting, since βN 	= 0, a simple
calculation gives

βT = �−1
T T μT − �−1

T T �T N βN (VII.1)

and

μN = �NT �−1
T T μT +

(
�N N − �NT �−1

T T �T N

)
βN . (VII.2)

In what follows, we provide conditions under which the
solution to the population version of the SDA estimator, given
in (II.1), correctly recovers the support of large entries T. Let
ŵ = (ŵ′

T , 0′)′ where ŵT is given as

ŵT = π1π2
1 + λ||β̃T ||1

1 + π1π2||β̃T ||2�T T

β̃T − λ�−1
T T sign(β̃T )

with β̃T = �−1
T T μT . We will show that ŵ is the solution

to (II.1).
We again define βmin = mina∈T |βa|. Following a similar

argument as the proof of Theorem 1, we have that
sign(ŵT ) = sign

(
β̃T
)

holds if β̃T satisfies

π1π2
1 + λ||β̃T ||1

1 + π1π2||β̃T ||2�T T

βmin > λ||�−1
T T sign

(
β̃T
) ||∞.

(VII.3)

In the approximate sparsity setting, it is reasonable to assume
that �−1

T T �T N βN is small compared to β̃T , which would imply
that sign(βT ) = sign

(
β̃T
)

using (VII.1). Therefore, under
suitable assumptions we have sign(ŵT ) = sign(βT ). Next,
we need conditions under which ŵ is the solution to (II.1).

Following a similar analysis as in Lemma 1, the optimality
condition

|| (�NT + π1π2μN μ′
T

)
ŵT − π1π2μN ||∞ ≤ λ

needs to hold. Let γ̂ = ��
1+λ||β̃T ||1

1+π1π2||β̃T ||2�T T

. Using (VII.2), the

above display becomes

‖ − λ�NT �−1
T T sign(βT )

−π1π2γ̂
(
�N N − �NT �−1

T T �T N

)
βN ‖∞ < λ.

Therefore, using the triangle inequality, the following
assumption

π1π2γ̂ · ||
(
�N N − �NT �−1

T T �T N

)
βN ||∞ < αλ,

in addition to (II.3) and (VII.3), is sufficient for ŵ to recover
the set of important variables T .

The above discussion could be made more precise and
extended to the sample SDA estimator in (I.3), by following
the proof of Theorem 3. This is beyond the scope of the current
paper and will be left as a future investigation.

APPENDIX A
PROOFS OF MAIN RESULTS

In this section, we collect proofs of results given in the main
text. We will use C, C1, C2, . . . to denote generic constants
that do not depend on problem parameters. Their values may
change from line to line.

Let

A = En ∩ E1(log−1(n)) ∩ E2(log−1(n))

∩ E3(log−1(n)) ∩ E4(log−1(n)), (A.1)

where En is defined in (E.1), E1 in Lemma 4, E2 in Lemma 5,
E3 in (E.2), and E4 in (E.3). We have that P[A] ≥
1 − O

(
log−1(n)

)
.

A. Proofs of Results in Section II

Proof of Lemma 1: From the KKT conditions given in (II.6),
we have that ŵ = (ŵ′

T , 0′)′ is a solution to the problem
in (II.1) if and only if(

�T T + π1π2μT μ′
T

)
ŵT − π1π2μT + λ sign(ŵT ) = 0

|| (�NT + π1π2μN μ′
T

)
ŵT − π1π2μN ||∞ ≤ λ

By construction, ŵT satisfy the first equation. Therefore, we
need to show that the second one is also satisfied. Plugging
in the explicit form of ŵT into the second equation and
using (II.2), after some algebra we obtain that

||�NT �−1
T T sign(βT )||∞ ≤ 1

needs to be satisfied. The above display is satisfied with strict
inequality under the assumption in (II.3). �

Proof of Lemma 2: Throughout the proof, we will work on
the event A defined in (A.1).

Let a ∈ T be such that ṽa > 0, noting that the case when
ṽa < 0 can be handled in a similar way. Let

δ1 = μ̂′
T S−1

T T sign(βT ) − μ′
T �−1

T T sign(βT ),

δ2 = e′
aS−1

T T μ̂T − e′
a�

−1
T T μT ,

δ3 = e′
aS−1

T T sign(βT ) − e′
a�−1

T T sign(βT ),

δ4 = μ̂′
T S−1

T T μ̂T − ||βT ||2�T T
,

and δ5 = n1n2

n(n − 2)
− π1π2.

Furthermore, let

γ̂ = n1n2

n(n − 2)

1 + λμ̂′
T S−1

T T sign(βT )

1 + n1n2
n(n−2) μ̂

′
T S−1

T T μ̂T

and

γ = π1π2(1 + λ||βT ||1)
1 + π1π2||βT ||2�T T

.

For sufficiently large n, on the event A, together with
Lemma 6, Lemma 10, and Lemma 7, we have that γ̂ ≥ γ
(1 − o(1)) > γ/2 and e′

aS−1
T T sign(βT ) = e′

a�
−1
T T sign(βT )

(1 + o(1)) ≤ 3
2 e′

a�−1
T T sign(βT ) with probability at least

1 − O
(
log−1(n)

)
. Then

ṽa ≥ γ

2
(βa + δ2) − 3

2
λe′

a�−1
T T sign(βT )

≥ π1π2(1 + λ||βT ||1)(βa − |δ2|) − 3λ0||�−1
T T sign(βT )||∞

2(1 + π1π2||βT ||2�T T
)

,

so that sign(̃va) = sign(βa) if

π1π2(1 + λ||βT ||1)(βa − |δ2|) − 3λ0||�−1
T T sign(βT )||∞ > 0.

(A.2)
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Lemma 9 gives a bound on |δ2|, for each fixed a ∈ T, as

|δ2| ≤ C1

√(
�−1

T T

)
aa

(
1 ∨ ||βT ||2�T T

) log(s log(n))

n

+ C2|βa|
√

log(s log(n))

n
.

Therefore assumption (II.8), with Kβ sufficiently large, and a
union bound over all a ∈ T implies (A.2).

Lemma 9 gives sign(β̂T ) = sign(βT ) with probability
1 − O(log−1(n)). �

Proof of Lemma 3: Throughout the proof, we will work on
the event A defined in (A.1). Using Lemma 2, we have that ṽT

defined in (II.15) satisfies ṽT = v̂T . Therefore, by construction
of the oracle optimization problem, the vector v̂ = (̃v′

T , 0′)′
satisfies the condition in (II.12).

Therefore, to show that it is a solution to (I.3), we
need to show that it also satisfies (II.13). To simplify
notation, let

C = S + n1n2

n(n − 2)
μ̂μ̂′,

γ̂ = n1n2

n(n − 2)

1 + λ||β̂T ||1
1 + n1n2

n(n−2) ||β̂T ||2ST T

,

and

γ = π1π2(1 + λ||βT ||1)
1 + π1π2||βT ||2�T T

.

Recall that ṽT = γ̂ S−1
T T μ̂T − λS−1

T T sign(βT ) and (II.13) can
be written as

||CNT ṽT − n1n2

n(n − 2)
μ̂N ||∞ ≤ λ.

Let U ∈ R
(n−2)×p be a matrix with each row ui

iid∼ N (0,�)
such that (n − 2)S = U′U. For a ∈ N , we have

(n − 2)SaT = (UT �−1
T T �T a + Ua·T )′UT

= �aT �−1
T T U′

T UT + U′
a·T UT

where Ua·T ∼ N
(

0, n1n2
n(n−2) σa|T In−2

)
is independent of UT,

and

μ̂a = �aT �−1
T T μ̂T + μ̂a·T

where μ̂a·T ∼ N
(

0, n
n1n2

σa|T
)

is independent of μ̂T .
Therefore,

CaT = SaT + n1n2

n(n − 2)
μ̂aμ̂

′
T

= �aT �−1
T T ST T + (n − 2)−1U′

a·T UT

+ n1n2

n(n − 2)
μ̂aμ̂′

T,

CaT ṽT = γ̂�aT �−1
T T μ̂T

+γ̂
n1n2

n(n − 2)

(
μ̂′

T S−1
T T μ̂T

)
μ̂a

−λ
(
�aT �−1

T T sign(βT ) + n1n2

n(n − 2)
||β̂T ||1 · μ̂a

)

+(n − 2)−1U′
a·T UT ṽT

=
(

γ̂ + γ̂
n1n2

n(n − 2)
μ̂′

T S−1
T T μ̂T

−λ
n1n2

n(n − 2)
||β̂T ||1

)
�aT �−1

T T μ̂T

−λ�aT �−1
T T sign(βT ) + (n − 2)−1U′

a·T UT ṽT

+γ̂
n1n2

n(n − 2)

(
μ̂′

T S−1
T T μ̂T

)
μ̂a·T

−λ
n1n2

n(n − 2)
||β̂T ||1 · μ̂a·T

= n1n2

n(n − 2)
�aT �−1

T T μ̂T − λ�aT �−1
T T sign(βT )

+(n − 2)−1U′
a·T UT ṽT

+γ̂
n1n2

n(n − 2)

(
μ̂′

T S−1
T T μ̂T

)
μ̂a·T

−λ
n1n2

n(n − 2)
||β̂T ||1 · μ̂a·T ,

and finally

CaT ṽT − n1n2

n(n − 2)
μ̂a

= −λ�aT �−1
T T sign(βT ) + (n − 2)−1U′

a·T UT ṽT

+ n1n2

n(n − 2)

(
γ̂ μ̂′

T S−1
T T μ̂T − λ||β̂T ||1 − 1

)
μ̂a·T .

First, we deal with the term

(n − 2)−1U′
a·T UT ṽT = γ̂

n − 2
U′

a·T UT S−1
T T μ̂T︸ ︷︷ ︸

T1,a

− λ

n − 2
U′

a·T UT S−1
T T sign(βT )︸ ︷︷ ︸

T2,a

.

Conditional on {yi }i∈[n] and XT, we have that

T1,a ∼ N
(

0,
n1n2

n(n − 2)
σa|T

γ̂ 2

n − 2
μ̂′

T S−1
T T μ̂T

)

and

max
a∈N

|T1,a| ≤
√

2
n1n2

n(n − 2)

(
max
a∈N

σa|T
)

γ̂ 2μ̂′
T S−1

T T μ̂T

×
√

log ((p − s) log(n))

n − 2

with probability at least 1 − log−1(n). On the event A, we
have that

max
a∈N

|T1,a| ≤ (1 + o(1))

√
2π1π2γ 2

(
max
a∈N

σa|T
)

||βT ||2�T T

×
√

log ((p − s) log(n))

n

= (1 + o(1))
√

2π1π2(1 + λ||βT ||1) λ

Kλ0

.

Since

||βT ||1 ≤ √
s||βT ||2

= √
s||�−1/2

T T �
1/2
T T βT ||2

≤
√

s�−1
min(�T T )||βT ||2�T T
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and

λ||βT ||1 = λ0||βT ||1
1 + π1π2||βT ||2�T T

≤
λ0

√
s�−1

min(�T T )||βT ||2�T T

1 + π1π2||βT ||2�T T

≤ Kλ0√
K

√(
1 ∨ ||βT ||2�T T

)
||βT ||2�T T

1 + π1π2||βT ||2�T T

≤ Kλ0

π1π2
√

K
,

we have that

max
a∈N

|T1,a| ≤ (1 + o(1))
√

2π1π2

(
K −1

λ0
+
(
π1π2

√
K
)−1
)

λ

< (α/3)λ

by taking both Kλ0 and K sufficiently large.
Similarly, conditional on {yi }i∈[n] and XT, we have that

T2,a ∼ N
(
0, σT2,a

)
, where

σT2,a = n1n2

n(n − 2)
σa|T

λ2

n − 2
sign(βT )′S−1

T T sign(βT ).

Therefore, on the event A,

max
a∈N

|T2,a| ≤ (1 + o(1))λ

√
2π1π2

(
max
a∈N

σa|T
)

�−1
min(�T T )

×
√

s log ((p − s) log(n))

n

≤ (1 + o(1))

√
2

K
λ < (α/3)λ

with probability at least 1 − log−1(n) for sufficiently large K .
Next, let

T3,a = n1n2

n(n − 2)

(
γ̂ μ̂′

T S−1
T T μ̂T − λ||β̂T ||1 − 1

)
μ̂a·T .

Simple algebra shows that

γ̂ μ̂′
T S−1

T T μ̂T − λ||β̂T ||1 − 1 = − 1 + λ||β̂T ||1
1 + n1n2

n(n−2) μ̂
′
T S−1

T T μ̂T
.

Therefore conditional on {yi }i∈[n] and XT, we have that
T3,a ∼ N

(
0, σT3,a

)
where

σT3,a =
(

n1n2

n(n − 2)

1 + λ||β̂T ||1
1 + n1n2

n(n−2) μ̂
′
T S−1

T T μ̂T

)2
n

n1n2
σa|T

On the event A, this gives

max
a∈N

|T3,a| ≤ (1 + o(1))
1 + λ||βT ||1

1 + π1π2||βT ||2�T T

×
√

2π1π2

(
max
a∈N

σa|T
)

log ((p − s) log(n))

n

≤ (1 + o(1))
√

2
1 + λ||βT ||1

1 + π1π2||βT ||2�T T

× 1

Kλ0

√
1 ∨ ||βT ||2�T T

λ

< (α/3)λ

with probability at least 1 − log−1(n) when Kλ0 and K are
chosen sufficiently large.

Piecing all these results together, we have that

max
a∈N

|CaT ṽT − n1n2

n(n − 2)
μ̂a| < 1. (A.3)

�

B. Proof of Theorem 4

The theorem will be shown using standard tools described
in [24]. First, in order to provide a lower bound on the
minimax risk, we will construct a finite subset of (�, τ, s),
which contains the most difficult instances of the estimation
problem so that estimation over the subset is as difficult as
estimation over the whole family. Let 1 ⊂ (�, τ, s), be a
set with finite number of elements, so that

inf
�

R(�,(�, τ, s) ≥ inf
�

max
θ∈1

Pθ [�({xi , yi }i∈[n]) 	= T (θ)].
To further lower bound the right hand side of the display
above, we will use [24, Th. 2.5]. Suppose that
1 = {θ0, θ1, . . . , θM } where T (θa) 	= T (θb) and

1

M

M∑
a=1

K L(Pθ0 |Pθa ) ≤ α log(M), α ∈ (0, 1/8) (A.4)

then

inf
�

R(�,(β, s) ≥
√

M

1 + √
M

(
1 − 2α −

√
2α

log(M)

)
.

Without loss of generality, we will consider θa = (μa, 0,�).
Denote Pθa the joint distributions of {Xi , Yi }i∈[n]. Under Pθa ,
we have Pθa (Yi = 1) = Pθa (Yi = 2) = 1

2 ,
Xi |Yi = 1 ∼ N (0,�) and Xi |Yi = 2 ∼ N (μa,�). Denote
f (x; μ,�) the density function of a multivariate Normal
distribution. With this we have

K L(Pθ0 |Pθa ) = Eθ0 log
dPθ0

dPθa

= Eθ0 log

∏
i∈[n] dPθ0[Xi |Yi ]Pθ0[Yi ]∏
i∈[n] dPθa [Xi |Yi ]Pθa [Yi ]

= Eθ0

∑
i : yi=2

log
f (Xi ; μ0,�)

f (Xi ; μa,�)

= Eθ0 n2

2
(μ0 − μa)′�−1(μ0 − μa)

= n

4
(β0 − βa)′�(β0 − βa) (A.5)

where βa = �−1μa . We proceed to construct different finite
collections for which (A.4) holds.

Consider a collection 1 = {θ0, θ1, . . . , θp−s}, with
θa = (μa, 0), that contains instances whose supports differ
in only one component. Vectors {μa}p−s

a=0 are constructed indi-
rectly through {βa}p−s

a=0, using the relationship βa = �−1μa .
Note that this construction is possible, since � is a full rank
matrix. For every a, all s non-zero elements of the vector βa

are equal to τ . Let T be the support and u(T ) an element
of the support T for which (III.1) is minimized. Set β0 so
that supp(β0) = T. The remaining p − s parameter vectors
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{βa}p−s
a=1 are constructed so that the support of βa contains

all s − 1 element in T\u(T ) and then one more element
from [p]\T . With this, (A.5) gives

K L(Pθ0 |Pθa) = nτ 2

4
(�uu + �vv − 2�uv )

and (III.1) gives

1

p − s

p−s∑
a=1

K L(Pθ0 |Pθa ) = nτ 2

4
ϕclose(�).

It follows from the display above that if

τ <

√
4

ϕclose(�)

log(p − s + 1)

n
, (A.6)

then (A.4) holds with α = 1/16.
Next, we consider another collection 2 = {θ0, θ1, . . . , θM },

where M = (p−s
s

)
, and the Hamming distance between T (θ0)

and T (θa) is equal to 2s. As before, θa = (μa, 0) and vectors
{μa}M

a=0 are constructed so that βa = �−1μa with s non-
zero components equal to τ . Let T be the support set for
which the minimum in (III.2) is attained. Set the vector β0
so that supp(β0) = T. The remaining vectors {βa}M

a=1 are set
so that their support contains s elements from the set [p]\T .
Now, (A.5) gives

K L(Pθ0 |Pθa ) = nτ 2

4
1′�T (θ0)∪T (θa),T (θ0)∪T (θa)1.

Using (III.2), if

τ <

√
4

ϕfar(�)

log
(p−s

s

)
n

, (A.7)

then (A.4) holds with α = 1/16.
Combining (A.6) and (A.7), by taking the larger β between

the two, we obtain the result.

C. Proof of Theorem 5

For a fixed T, let �(T ′)= f (T )− f (T ′) and T ={T ′ ⊂ [p] :
|T ′| = s, T ′ 	= T }. Then

PT [T̂ 	= T ] = PT [
⋃

T ′∈T
{�(T ′) < 0}]

≤
∑

T ′∈T
PT [�(T ′) < 0].

Partition μ̂T = (μ̂′
1, μ̂

′
2)

′, where μ̂1 contains the variables
in T ∩ T ′, and μ̂T ′ = (μ̂′

1, μ̂
′
3)

′. Similarly, we can partition
the covariance matrix ST T and ST ′T ′ . Then,

g(T ) = μ̂′
1S−1

11 μ̂1 + μ̃′
2|1S−1

22|1μ̃2|1

where μ̃2|1 = μ̂2 − S21S−1
11 μ̂1 and S22|1 = S22 − S21S−1

11 S12
(see [17, Sec. 3.6.2]). Furthermore, we have that

�(T ′) = μ̃′
2|1S−1

22|1μ̃2|1 − μ̃′
3|1S−1

33|1μ̃3|1.

The two terms are correlated, but we will ignore this
correlation and use the union bound to lower bound the first
term and upper bound the second term. We start with analyzing

μ̃′
2|1S−1

22|1μ̃2|1, noting that the result for the second term will
follow in the same way. By [17, Th. 3.4.5], we have that

S22|1 ∼ Ws−|T ∩T ′|
(
(n − 2)−1�22|1, n − 2 − |T ∩ T ′|

)
and independent of (S12, S11, μ̂). Therefore S22|1 is indepen-
dent of μ̃2|1 and [20, Th. 3.2.12] gives us that

(n − 2)
μ̃′

2|1�
−1
22|1μ̃2|1

μ̃′
2|1S−1

22|1μ̃2|1
∼ χ2

n−1−s .

As in Lemma 4, we can show that

1 − C1

√
log(η−1)

n
≤ μ̃′

2|1S−1
22|1μ̃2|1

μ̃′
2|1�

−1
22|1μ̃2|1

and

1 + C2

√
log(η−1)

n
≥ μ̃′

2|1S−1
22|1μ̃2|1

μ̃′
2|1�

−1
22|1μ̃2|1

.

For μ̃2|1, we have

μ̃2|1 = μ̂2 − S21S−1
11 μ̂1

= μ̂2|1 + �21�
−1
11 μ̂1 − S21S−1

11 μ̂1,

where μ̂2|1 ∼ N (μ2|1, n
n1n2

�22|1), independent of μ̂1, and

μ2|1 = μ2 −�21�
−1
11 μ1. Conditioning on μ̂1 and S1, we have

that

S21S−1
11 μ̂1 = �21�

−1
11 μ̂1 + Z,

where Z ∼ N
(

0, (n − 2)−1μ̂′
1S−1

11 μ̂1�22|1
)

. Since μ̂2|1 is

independent of (S12, S11, μ̂1), we have that

μ̃2|1|μ̂1, S11 ∼ N
(
μ2|1, a�22|1

)
,

where a = n
n1n2

+ (n − 2)−1μ̂′
1S−1

11 μ̂1. Then

μ̃′
2|1�

−1
22|1μ̃2|1 | μ̂1, S11 ∼ aχ2

|T \T ′|
(

a−1μ′
2|1�

−1
22|1μ2|1

)
.

Therefore, conditioned on (μ̂1, S11),

μ̃′
2|1S−1

22|1μ̃2|1

≥
⎛
⎝1 − C1

√
log(η−1)

n

⎞
⎠

×
((

μ′
2|1�

−1
22|1μ2|1 + a|T\T ′|

)

−2

√(
2aμ′

2|1�
−1
22|1μ2|1 + a2|T\T ′|

)
log(η−1)

)

with probability 1 − 2η. Similarly,

μ̃′
3|1S−1

33|1μ̃3|1

≤
⎛
⎝1 + C2

√
log(η−1)

n

⎞
⎠

×
((

μ′
3|1�

−1
33|1μ3|1 + a|T ′\T |

)

+ 2

√(
2aμ′

3|1�
−1
33|1μ3|1 + a2|T ′\T |

)
log(η−1)

+ 2a log(η−1)

)
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with probability 1 − 2η. Finally, Lemma 6 gives that
|a| ≤ C

(
1 ∨ μ′

1�
−1
11 μ1

)
n−1 with probability 1 − 2η.

Set ηk =
((p−s

s−k

)(s
k

)
s log(n)

)−1
. For any T ′ ⊂ [p], where

|T ′| = s and |T ′ ∩ T | = k, we have that

μ̃′
2|1S−1

22|1μ̃2|1 − μ̃′
3|1S−1

33|1μ̃3|1
≥ (1 − o(1))μ′

2|1�−1
22|1μ2|1 − (1 + o(1))μ′

3|1�−1
33|1μ3|1

− C

√(
1 ∨ μ′

1�
−1
11 μ1

)
μ′

2|1�
−1
22|1μ2|1�n,p,s,k

− C
(

1 ∨ μ′
1�

−1
11 μ1

)
�n,p,s,k .

The right hand side in the above display is bounded away from
zero with probability

1 − O
(((

p − s

s − k

)(
s

k

)
s log(n)

)−1
)

under the assumptions. Therefore,

PT [T̂ 	= T ] ≤
s−1∑
k=0

∑
T ′∈T : |T ∩T ′|=k

PT [�(T ′) < 0]

≤ C

log(n)
,

which completes the proof.

APPENDIX B
PROOF OF RISK CONSISTENCY

In this section, we give a proof of Corollary 1. From
Theorem 3 we have that v̂ = (̂v′

T , 0′)′ with v̂T defined in (II.9).
Define

ṽT = n(n − 2)

n1n2

(
1 + n1n2

n(n − 2)
μ̂′

T S−1
T T μ̂T

)
v̂T .

To obtain a bound on the risk, we need to control

−ṽ′
T (μi,T − μ̂i,T ) − ṽ′

T μ̂T /2√
ṽ′

T �T T ṽT

for i ∈ {1, 2}. Define the following quantities

δ1 = μ̂′
T S−1

T T sign(βT ) − ||βT ||1, δ̃1 = δ1/||βT ||1,
δ2 = μ̂′

T S−1
T T μ̂T − ||βT ||2�T T

, and δ̃2 = δ2/||βT ||2�T T
.

Under the assumptions, we have that

λ0 = O

⎛
⎝
√

�min(�T T )||βT ||2�T T

K (n)s

⎞
⎠,

rn = O
(

λ0||βT ||1
||βT ||2�T T

)

= O
(

||βT ||1
||βT ||�T T

√
�min(�T T )

K (n)s

)
,

and

δ̃2 = OP

(√
log log(n)

n
∨ s ∨ log log(n)

||βT ||2�T T
n

)
.

The last equation follows from Lemma 6. Note that
δ̃2 = O(rn). From Lemma 7, we have that δ̃1 = op(1).

We have

λμ̂′
T S−1

T T sign(βT ) = λ||βT ||1(1 + OP (̃δ1)) = OP (rn),

since Lemma 7 gives δ̃1 = op(1), and

n(n−2)
n1n2

+ μ̂′
T S−1

T T μ̂T

1 + π1π2||βT ||2�T T

= OP(1).

Therefore

ṽT = (1 + OP(rn))S−1
T T μ̂T − OP (1)λ0S−1

T T sign(βT ).

With this, we have

ṽ′
T μ̂T = (1 + OP(rn))(1 + OP (̃δ2))||βT ||2�T T

−OP(1)(1 + OP (̃δ1))λ0||βT ||1
= ||βT ||2�T T

[
1 + OP (rn) − OP (1)

λ0||βT ||1
||βT ||2�T T

]

= ||βT ||2�T T
[1 + OP (rn)] , (B.1)

where the last line follows from

λ||βT ||1 
 λ0||βT ||1/||βT ||2�T T
.

Next

(μ1,T − μ̂1,T )′S−1
T T μ̂T

≤ ||S−1/2
T T (μ1,T − μ̂1,T )||2||S−1/2

T T μ̂T ||2
≤ (1 + OP(

√
s/n))�

−1/2
min (�T T )

√
s

×||μ1,T − μ̂1,T ||∞||βT ||�T T

√
1 + OP (̃δ2)

= ||βT ||�T T OP

(√
�−1

min(�T T )s log log(n)/n

)

and similarly

(μ1,T − μ̂1,T )′S−1
T T sign(βT )

= √
qnOP

(√
�−1

min(�T T )s log log(n)/n

)
.

Combining these two estimates, we have

∣∣̃v′
T (μ1,T − μ̂1,T )

∣∣
= ||βT ||�T T

(
1 − λ0

√
qn/||βT ||�T T

)
×OP

(√
�−1

min(�T T )s log log(n)/n

)

= ||βT ||�T T OP

(√
�−1

min(�T T )s log log(n)/n

)
. (B.2)

From (B.1) and (B.2), we have that

− (̃v′
T (μ1,T − μ̂1,T )

)− ṽ′
T μ̂T /2 = −||βT ||2�T T

2
(1 + OP (rn)).

(B.3)
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Finally, a simple calculation gives,

ṽ′
T �T T ṽT ≤ �max

(
S−1/2

T T �T T S−1/2
T T

)

×
(

(1 + OP(rn))2 μ̂′
T S−1

T T μ̂T

+ OP (1)λ2
0 sign(βT )′S−1

T T sign(βT )

− OP (1)λ0μ̂
′
T S−1

T T sign(βT )
)

= ||βT ||2�T T

×
(

1 + OP

(
rn ∨ δ̃2 ∨ λ2

0qn

||βT ||2�T T

∨
√

s

n

))

= ||βT ||2�T T

(
1 + OP

(
rn ∨ λ2

0qn

||βT ||2�T T

))
. (B.4)

Combining the equation (B.3) and (B.4), we have that

−ṽ′
T (μ1,T − μ̂1,T ) − ṽ′

T μ̂T /2√
ṽ′

T �T T ṽT

= −||βT ||�T T

2

(1 + OP (rn))√
1 + OP

(
rn ∨ λ2

0qn

||βT ||2�T T

) .

This completes the proof.

APPENDIX C
ALTERNATIVE ENCODING OF THE CLASS LABELS

The optimization problem in (I.3) uses a particular scheme
to encode class labels in the vector z, though other choices
are possible as well. For example, suppose that we choose
zi = z(1) if yi = 1 and zi = z(2) if yi = 2, with z(1) and
z(2) such that n1z(1) + n2z(2) = 0. Let ṽ = (̃v′̃

T
, 0′)′ (for some

T̃ ⊂ [p]) be a solution to (I.3) with the alternative coding.
The KKT conditions for the vector ṽ are(

ST̃ T̃ + n1n2

n(n − 2)
μ̂T̃ μ̂′̃

T

)
ṽT̃ = n1z(1)

n − 2
μ̂T̃ − λ̃ sign(̃vT̃ )

(C.1)

and∣∣∣∣
∣∣∣∣
(

SÑ T̃ + n1n2

n(n − 2)
μ̂Ñ μ̂′̃

T

)
ṽT̃ − n1z(1)

n − 2
μ̂Ñ

∣∣∣∣
∣∣∣∣∞ ≤ λ̃. (C.2)

Now, choosing λ̃ = z(1)n
n2

λ, we obtain that ṽT̃ , which satisfies
(C.1) and (C.2), is proportional to ŵT with T̃ = T (compare
(C.1) and (C.2) to (II.12) and (II.13)). Therefore, the choice
of different coding schemes of the response variable zi does
not effect the result.

APPENDIX D
DERIVATION OF EQ. (II.11)

Let π̄ = π1π2. Recall that C = Var(X) and C = �+π̄μμ′.
Using the Woodbury matrix identity

C−1
T T = �−1

T T − π̄
�−1

T T μT μ′
T �−1

T T

1 + π̄μ′
T �−1

T T μT
,

which gives us

CNT C−1
T T = (

�NT + π̄μN μ′
T

)(
�−1

T T − π̄
�−1

T T μT μ′
T �−1

T T

1 + π̄μ′
T �−1

T T μT

)

=
(
�NT + π̄�NT �−1

T T μT μ′
T

)

×
(

�−1
T T − π̄

�−1
T T μT μ′

T �−1
T T

1 + π̄μ′
T �−1

T T μT

)

= �NT �−1
T T .

This shows the identity (II.11).

APPENDIX E
TECHNICAL RESULTS

We provide some technical lemmas which are useful
for proving the main results. Without loss of generality,
π1 = π2 = 1/2 in model (I.2). Define

En =
{n

4
≤ n1 ≤ 3n

4

}
∩
{n

4
≤ n2 ≤ 3n

4

}
, (E.1)

where n1, n2 are defined in §I. Observe that
n1 ∼ Binomial(n, 1/2), which gives P[{n1 ≤ n/4}] ≤
exp(−3n/64) and P[{n1 ≥ 3n/4}] ≤ exp(−3n/64)
using standard tail bound for binomial random variable
(see [7, p. 130]). Therefore

P[En] ≥ 1 − 4 exp(−3n/64).

The analysis is performed by conditioning on y and, in
particular, we will perform analysis on the event En . Note that
on En , 16/9n−1 ≤ n/(n1n2) ≤ 16n−1. In our analysis, we do
not strive to obtain the sharpest possible constants.

A. Deviation of the Quadratic Scaling Term

In this section, we collect lemmas that will help us deal
with bounding the deviation of μ̂′

T S−1
T T μ̂T from μ′

T �−1
T T μT .

Lemma 4: Define the event

E1(η) =
⎧⎨
⎩1 − C1

√
log(η−1)

n
≤ μ̂′

T S−1
T T μ̂T

μ̂′
T �−1

T T μ̂T

⎫⎬
⎭

⋂⎧⎨
⎩1 + C2

√
log(η−1)

n
≥ μ̂′

T S−1
T T μ̂T

μ̂′
T �−1

T T μ̂T

⎫⎬
⎭,

for some constants C1, C2 > 0. Assume that s = o(n), then
P[E1(η)] ≥ 1 − η for n sufficiently large.

Proof of Lemma 4: Using [20, Th. 3.2.12]

(n − 2)
μ̂′

T �−1
T T μ̂T

μ̂′
T S−1

T T μ̂T
∼ χ2

n−1−s

(F.2) gives

n − 2

n − 1 − s

1

1 +
√

16 log(η−1)
3(n−1−s)

≤ μ̂′
T S−1

T T μ̂T

μ̂′
T �−1

T T μ̂T

and
n − 2

n − 1 − s

1

1 −
√

16 log(η−1)
3(n−1−s)

≥ μ̂′
T S−1

T T μ̂T

μ̂′
T �−1

T T μ̂T



KOLAR AND LIU: OPTIMAL FEATURE SELECTION IN HIGH-DIMENSIONAL DISCRIMINANT ANALYSIS 1079

with probability at least 1 − η. Since s = o(n), the above
display becomes

1 − C1

√
log(η−1)

n
≤ μ̂′

T S−1
T T μ̂T

μ̂′
T �−1

T T μ̂T
≤ 1 + C2

√
log(η−1)

n

for n sufficiently large. �
Lemma 5: Define the event

E2(η) =
{
μ̂′

T �−1
T T μ̂T ≤ ||βT ||2�T T

+ C1

⎛
⎝s ∨ log(η−1)

n
∨
√

||βT ||2�T T
log(η−1)

n

⎞
⎠}

⋂{
μ̂′

T �−1
T T μ̂T ≥ ||βT ||2�T T

−C2

⎛
⎝ s

n
∨
√

||βT ||2�T T
log(η−1)

n

⎞
⎠
}
.

Assume that βmin ≥ cn−1/2, then P[E2(η)] ≥ 1 − 2η for
n sufficiently large.

Proof of Lemma 5: Recall that

μ̂T ∼ N (μT ,
n

n1n2
�T T ).

Therefore

n1n2

n
μ̂′

T �−1
T T μ̂T ∼ χ2

s

(n1n2

n
μ′

T �−1
T T μT

)
.

Using (F.3), we have that

μ̂′
T �−1

T T μ̂T ≤ ||βT ||2�T T
+ ns

n1n2

+ 2n

n1n2

√(
s + 2

n1n2

n
||βT ||2�T T

)
log(η−1)

+ 2n

n1n2
log(η−1)

≤ ||βT ||2�T T
+ 16s

n

+ 32

√√√√
(

s

n2 + 2||βT ||2�T T

n

)
log(η−1)

+32 log(η−1)

n

≤ ||βT ||2�T T

+ C1

⎛
⎝s

n
∨
√

||βT ||2�T T
log(η−1)

n
∨ log(η−1)

n

⎞
⎠,

with probability 1−η. The second inequality follows since we
are working on the event En , and the third inequality follows
from the fact that βmin ≥ cn−1/2. A lower bound follows

from (F.4),

μ̂′
T �−1

T T μ̂T ≥ ||βT ||2�T T
+ ns

n1n2

− 2n

n1n2

√(
s + 2

n1n2

n
||βT ||2�T T

)
log(η−1)

≥ ||βT ||2�T T
+ 16s

9n

−32

√√√√
(

s

n2 + 2||βT ||2�T T

n

)
log(η−1)

≥ ||βT ||2�T T
− C2

⎛
⎝ s

n
∨
√

||βT ||2�T T
log(η−1)

n

⎞
⎠

with probability 1 − η. �
Lemma 6: On the event E1(η) ∩ E2(η) the following holds∣∣∣μ̂′
T S−1

T T μ̂T − ||βT ||2�T T

∣∣∣
≤ C

((
||βT ||2�T T

∨ ||βT ||�T T

)√ log(η−1)

n

∨s ∨ log(η−1)

n

)
.

Proof of Lemma 6: On the event E1(η) ∩ E2(η), using
Lemma 4 and Lemma 5, we have that

μ̂′
T S−1

T T μ̂T = μ̂′
T S−1

T T μ̂T

μ̂′
T �−1

T T μ̂T
μ̂′

T �−1
T T μ̂T

= μ̂′
T S−1

T T μ̂T

μ̂′
T �−1

T T μ̂T
μ′

T �−1
T T μT

+ μ̂′
T S−1

T T μ̂T

μ̂′
T �−1

T T μ̂T

(
μ̂′

T �−1
T T μ̂T − μ′

T �−1
T T μT

)

≤ ||βT ||2�T T
+ C1||βT ||2�T T

√
log(η−1)

n

+ C2

⎛
⎝s ∨ log(η−1)

n
∨
√

||βT ||2�T T
log(η−1)

n

⎞
⎠.

A lower bound is obtained in the same way. �

B. Other Results

Let the event E3(η) be defined as

E3(η) =
⋂

a∈[s]

{∣∣∣�−1
T T μ̂T − �−1

T T μT

∣∣∣

≤
√

32(�−1
T T )aa

log(sη−1)

n

}
. (E.2)

Since �−1
T T μ̂T is a multivariate normal with mean �−1

T T μT and
variance n

n1n2
�−1

T T , we have P[E3(η)] ≥ 1 − η.
Furthermore, define the event E4(η) as

E4(η) =
{
|(μ̂T − μT )′�−1

T T sign(βT )|

≤
√

32�−1
min(�T T )

s log(η−1)

n

}
. (E.3)
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Since μ̂′
T �−1

T T sign(βT ) follows a Normal distribution
with the mean μ′

T �−1
T T sign(βT ) and variance

n
n1n2

sign(βT )′�−1
T T sign(βT ), we have P[E4(η)] ≥ 1 − η.

The next result gives a deviation of μ̂′
T S−1

T T sign(βT ) from
μ′

T �−1
T T sign(βT ).

Lemma 7: The following inequality∣∣∣μ̂′
T S−1

T T sign(βT ) − μ′
T �−1

T T sign(βT )
∣∣∣

≤ C

(√
�−1

min(�T T )s
(

1 ∨ ||βT ||2�T T

)
∨ ||βT ||1

)

×
√

log log(n)

n
(E.4)

holds with probability at least 1 − O(log−1(n)).
Proof: Using the triangle inequality∣∣∣μ̂′

T S−1
T T sign(βT ) − μ′

T �−1
T T sign(βT )

∣∣∣
≤
∣∣∣μ̂′

T S−1
T T sign(βT ) − μ̂′

T �−1
T T sign(βT )

∣∣∣
+
∣∣∣μ̂′

T �−1
T T sign(βT ) − μ′

T �−1
T T sign(βT )

∣∣∣ . (E.5)

For the first term, we write∣∣∣μ̂′
T S−1

T T sign(βT ) − μ̂′
T �−1

T T sign(βT )
∣∣∣

≤ sign(βT )′S−1
T T sign(βT )

×
∣∣∣∣ μ̂′

T S−1
T T sign(βT )

sign(βT )′S−1
T T sign(βT )

− μ̂′
T �−1

T T sign(βT )

sign(βT )′�−1
T T sign(βT )

∣∣∣∣
+ sign(βT )′S−1

T T sign(βT )

×
∣∣∣∣∣
sign(βT )′�−1

T T sign(βT )

sign(βT )′S−1
T T sign(βT )

− 1

∣∣∣∣∣
×
∣∣∣∣∣

μ̂′
T �−1

T T sign(βT )

sign(βT )′�−1
T T sign(βT )

∣∣∣∣∣. (E.6)

Let

G =
(

μ̂′
T �−1

T T μ̂T μ̂′
T �−1

T T sign(βT )

sign(βT )′�−1
T T μ̂T sign(βT )�−1

T T sign(βT )

)
,

and

Ĝ =
(

μ̂′
T S−1

T T μ̂T μ̂′
T S−1

T T sign(βT )

sign(βT )′S−1
T T μ̂T sign(βT )S−1

T T sign(βT )

)
.

Using [4, Th. 3], we compute the density of ẑa = Ĝ12Ĝ−1
22

conditional on μ̂T and obtain that√
n − s

q

(
μ̂′

T S−1
T T sign(βT )

sign(βT )′S−1
T T sign(βT )

− μ̂′
T �−1

T T sign(βT )

sign(βT )′�−1
T T sign(βT )

)
| μ̂T ∼ tn−s ,

where

q =
μ̂′

T

(
�−1

T T − �−1
T T sign(βT ) sign(βT )′�−1

T T

sign(βT )′�−1
T T sign(βT )

)
μ̂T

sign(βT )′�−1
T T sign(βT )

≤ μ̂′
T �−1

T T μ̂T

sign(βT )′�−1
T T sign(βT )

.

Lemma 14 gives∣∣∣∣∣
μ̂′

T S−1
T T sign(βT )

sign(βT )′S−1
T T sign(βT )

− μ̂′
T �−1

T T sign(βT )

sign(βT )′�−1
T T sign(βT )

∣∣∣∣∣

≤ C

√√√√ μ̂′
T �−1

T T μ̂T

sign(βT )′�−1
T T sign(βT )

log log(n)

n
,

with probability at least 1 − log−1(n). Combining with
Lemma 8, Lemma 5, and (E.3), we obtain an upper bound
on the RHS of (E.6) as∣∣∣μ̂′

T S−1
T T sign(βT ) − μ̂′

T �−1
T T sign(βT )

∣∣∣
≤ C

(√
�−1

min(�T T )s||βT ||2�T T
∨ ||βT ||1

)

×
√

log log(n)

n
(E.7)

with probability at least 1 − O(log−1(n)).
The second term in (E.5) can be bounded using (E.3) with

η = log−1(n). Therefore, combining with (E.7), we obtain∣∣∣μ̂′
T S−1

T T sign(βT ) − μ′
T �−1

T T sign(βT )
∣∣∣

≤ C

(√
�−1

min(�T T )s
(

1 ∨ ||βT ||2�T T

)
∨ ||βT ||1

)

×
√

log log(n)

n

with probability at least 1 − O(log−1(n)), as desired. �
Lemma 8: There exist constants C1, C2, C3, and C4 such

that each of the following inequalities hold with probability at
least 1 − log−1(n) :

e′
aS−1

T T ea

≤ C1e′
a�−1

T T ea

(
1 + O

(√
log(s log(n))

n

))
, ∀a ∈ T

(E.8)∣∣∣∣∣
e′

a�
−1
T T ea

e′
aS−1

T T ea
− 1

∣∣∣∣∣ ≤ C2

√
log(s log(n))

n
, ∀a ∈ T (E.9)

∣∣∣∣∣
sign(βT )′�−1

T T sign(βT )

sign(βT )′S−1
T T sign(βT )

− 1

∣∣∣∣∣ ≤ C3

√
log log(n)

n
, (E.10)

and

sign(βT )′S−1
T T sign(βT )

≤ C4 sign(βT )′�−1
T T sign(βT )

(
1 + O

(√
log log(n)

n

))
.

(E.11)
Proof: [20, Th. 3.2.12] states that

(n − 2)
e′

a�
−1
T T ea

e′
aS−1

T T ea
∼ χ2

n−s−1.

Using Equation (F.2),∣∣∣∣∣
n − 2

n − s − 1

e′
a�

−1
T T ea

e′
aS−1

T T ea
− 1

∣∣∣∣∣ ≤
√

16 log(2s log(n))

3(n − s − 1)
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with probability 1 − (2s log(n))−1. Rearranging terms in the
display above, we have that

e′
aS−1

T T ea ≤ Ce′
a�−1

T T ea

(
1 + O

(√
log(s log(n))

n

))

and ∣∣∣∣∣
e′

a�−1
T T ea

e′
aS−1

T T ea
− 1

∣∣∣∣∣ ≤ C

√
log(s log(n))

n
.

A union bound gives (E.8) and (E.9).
Equations (E.10) and (E.11) are shown similarly. �
Lemma 9: There exist constants C1, C2 > 0 such that the

following inequality

∀a ∈ T :
∣∣∣e′

aS−1
T T μ̂T − e′

a�
−1
T T μT

∣∣∣
≤ C1

√(
�−1

T T

)
aa

(
1 ∨ ||βT ||2�T T

) log(s log(n))

n

+ C2

∣∣∣e′
a�

−1
T T μT

∣∣∣
√

log(s log(n))

n

holds with probability at least 1 − O(log−1(n)).
Proof: Using the triangle inequality, we have∣∣e′

aS−1
T T μ̂T − e′

a�−1
T T μT

∣∣
≤
∣∣∣e′

aS−1
T T μ̂T − e′

a�
−1
T T μ̂T

∣∣∣
+
∣∣∣e′

a�−1
T T μ̂T − e′

a�
−1
T T μT

∣∣∣ . (E.12)

For the first term, we write∣∣∣e′
aS−1

T T μ̂T − e′
a�−1

T T μ̂T

∣∣∣
≤ e′

aS−1
T T ea

∣∣∣∣∣
e′

aS−1
T T μ̂T

e′
aS−1

T T ea
− e′

a�−1
T T μ̂T

e′
a�−1

T T ea

∣∣∣∣∣
+ e′

aS−1
T T ea

∣∣∣∣∣
e′

a�−1
T T ea

e′
aS−1

T T ea
− 1

∣∣∣∣∣
∣∣∣∣∣
e′

a�
−1
T T μ̂T

e′
a�

−1
T T ea

∣∣∣∣∣ . (E.13)

As in the proof of Lemma E.4, we can show that√
n − s

qa

(
e′

aS−1
T T μ̂T

e′
aS−1

T T ea
− e′

a�
−1
T T μ̂T

e′
a�

−1
T T ea

)
| μ̂T ∼ tn−s ,

where

qa =
μ̂′

T

(
�−1

T T − �−1
T T ea e′

a�−1
T T

e′
a�−1

T T ea

)
μ̂T

e′
a�

−1
T T ea

≤ μ̂′
T �−1

T T μ̂T

e′
a�

−1
T T ea

.

Lemma 14 and an application of union bound gives∣∣∣∣∣
e′

aS−1
T T μ̂T

e′
aS−1

T T ea
− e′

a�
−1
T T μ̂T

e′
a�

−1
T T ea

∣∣∣∣∣

≤ C

√√√√ μ̂′
T �−1

T T μ̂T

e′
a�

−1
T T ea

log(s log(n))

n
, ∀a ∈ T,

with probability at least 1 − O(log−1(n)). Combining
Lemma 5, Lemma 8 and Equation (E.2) with η = log−1(n),

we can bound the right hand side of (E.13) as∣∣∣e′
aS−1

T T μ̂T − e′
a�

−1
T T μ̂T

∣∣∣
≤ C1

√(
�−1

T T

)
aa

||βT ||2�T T

log(s log(n))

n

+ C2

∣∣∣e′
a�

−1
T T μT

∣∣∣
√

log(s log(n))

n
(E.14)

with probability at least 1 − O(log−1(n)).
The second term in (E.12) is handled by (E.2) with

η = log−1(n). Combining with (E.14), we obtain∣∣∣e′
aS−1

T T μ̂T − e′
a�

−1
T T μT

∣∣∣
≤ C1

√(
�−1

T T

)
aa

(
1 ∨ ||βT ||2�T T

) log(s log(n))

n

+ C2

∣∣∣e′
a�

−1
T T μT

∣∣∣
√

log(s log(n))

n

with probability at least 1 −O(log−1(n)). This completes the
proof. �

Lemma 10: The probability of the event

⋂
a∈[s]

{
|e′

a(S
−1
T T − �−1

T T ) sign(βT )|

≤ C

(√
(�−1

T T )aa�
−1
min(�T T )s

∨
|e′

a�
−1
T T sign(βT )|

)

×
√

log(s log(n))

n

}

is at least 1 − 2 log−1(n) for n sufficiently large.
Proof: Write

|e′
aS−1

T T sign(βT ) − e′
a�

−1
T T sign(βT )|

≤ e′
aS−1

T T ea
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e′

aS−1
T T sign(βT )

e′
aS−1

T T ea
− e′

a�−1
T T sign(βT )

e′
a�

−1
T T ea

∣∣∣∣∣
+ e′

aS−1
T T ea

∣∣∣∣∣
e′

a�
−1
T T ea
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T T ea
− 1
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e′
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∣∣∣∣∣. (E.15)

As in the proof of Lemma E.4, we can show that√
n − s

qa

(
e′

aS−1
T T sign(βT )

e′
aS−1

T T ea
− e′

a�−1
T T sign(βT )

e′
a�

−1
T T ea

)
∼ tn−s ,

where

qa =
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(
�−1

T T − �−1
T T eae′

a�−1
T T

e′
a�−1

T T ea

)
sign(βT )

e′
a�−1

T T ea
.

Therefore,
∣∣∣∣e

′
aS−1

T T sign(βT )

e′
aS−1

T T ea
− e′

a�
−1
T T sign(βT )

e′
a�−1

T T ea

∣∣∣∣ ≤ C

√
qa

log(s log(n))

n

(E.16)

with probability 1 − (s log(n))−1. Combining
Lemma 8 and (E.16), we can bound the right hand side
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of Equation (E.15) as

|e′
aS−1

T T sign(βT ) − e′
a�−1

T T sign(βT )|
≤ C

(
(�−1

T T )aa
√

qa ∨ |e′
a�

−1
T T sign(βT )|

)
×
√

log(s log(n))

n

≤ C

(√
(�−1

T T )−1
aa �−1

min(�T T )s ∨ |e′
a�

−1
T T sign(βT )|

)

×
√

log(s log(n))

n

where the second inequality follows from

qa ≤ (�−1
T T )−1

aa sign(βT )′�−1
T T sign(βT )

≤ (�−1
T T )−1

aa �−1
min(�T T )s.

An application of the union bound gives the desired result. �

APPENDIX F
TAIL BOUNDS FOR CERTAIN RANDOM VARIABLES

In this section, we collect useful results on tail bounds of
various random quantities used throughout the paper. We start
by stating a lower and upper bound on the survival function
of the standard normal random variable. Let Z ∼ N (0, 1) be
a standard normal random variable. Then for t > 0

1√
2π

t

t2 + 1
exp(−t2/2)

≤ P(Z > t) ≤ 1√
2π

1

t
exp(−t2/2). (F.1)

Next, we collect results concerning tail bounds for
central χ2 random variables.

Lemma 11 [14]: Let X ∼ χ2
d . For all x ≥ 0,

P[X − d ≥ 2
√

dx + 2x] ≤ exp(−x)

P[X − d ≤ −2
√

dx] ≤ exp(−x).
Lemma 12 [12]: Let X ∼ χ2

d , then

P[|d−1 X − 1| ≥ x] ≤ exp(− 3

16
dx2), x ∈ [0,

1

2
). (F.2)

The following result provides a tail bound for non-central
χ2 random variable with non-centrality parameter ν.

Lemma 13 [3]: Let X ∼ χ2
d (ν), then for all x > 0

P[X ≥ (d + ν) + 2
√

(d + 2ν)x + 2x] ≤ exp(−x) (F.3)

P[X ≤ (d + ν) − 2
√

(d + 2ν)x] ≤ exp(−x). (F.4)
The following Lemma gives a tail bound for a t-distributed

random variable.
Lemma 14: Let X be a random variable distributed as

X ∼ σd−1/2td ,

where td denotes a t-distribution with d degrees of freedom.
Then

|X | ≤ C
√

σ 2d−1 log(4η−1)

with probability at least 1 − η.
Proof: Let Y ∼ N (0, 1) and Z ∼ χ2

d be two independent
random variables. Then X is equal in distribution to

σd−1/2Y√
d−1 Z

.

Using (F.1),

|σd−1/2Y | ≤ σd−1/2
√

log(4η−1)

with probability at least 1 − η/2. (F.2) gives

d−1 X ≥ 1 −
√

16

3d
log(2η−1)

with probability at least 1 − η/2. Therefore, for sufficiently
large d ,

|X | ≤ C
√

σ 2d−1 log(4η−1).

�
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