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Abstract
Large scale convex-concave minimax problems arise in numerous applications, including 
game theory, robust training, and training of generative adversarial networks. Despite their 
wide applicability, solving such problems efficiently and effectively is challenging in the 
presence of large amounts of data using existing stochastic minimax methods. We study 
a class of stochastic minimax methods and develop a communication-efficient distributed 
stochastic extragradient algorithm, LocalAdaSEG, with an adaptive learning rate suitable 
for solving convex-concave minimax problems in the Parameter-Server model. LocalA-
daSEG has three main features: (1) a periodic communication strategy that reduces the 
communication cost between workers and the server; (2) an adaptive learning rate that is 
computed locally and allows for tuning-free implementation; and (3) theoretically, a nearly 
linear speed-up with respect to the dominant variance term, arising from the estimation 
of the stochastic gradient, is proven in both the smooth and nonsmooth convex-concave 
settings. LocalAdaSEG is used to solve a stochastic bilinear game, and train a generative 
adversarial network. We compare LocalAdaSEG against several existing optimizers for 
minimax problems and demonstrate its efficacy through several experiments in both homo-
geneous and heterogeneous settings.
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1 Introduction

Stochastic minimax optimization problems arise in applications ranging from game theory 
(Neumann, 1928), robust optimization (Delage & Ye, 2010), and AUC Maximization (Guo 
et al., 2020), to adversarial learning (Wang et al., 2019) and training of generative adver-
sarial networks (GANs) (Goodfellow et al., 2014). In this work, we consider

where X ⊆ � , Y ⊆ �  are nonempty compact convex sets, � , �  are finite dimensional vec-
tor spaces, � is a random vector with an unknown probability distribution P supported 
on a set Ξ , and f ∶ X × Y × Ξ → ℝ is a real valued function, which may be nonsmooth. 
Throughout the paper, we assume that the expectation ��∼P[f (x, y, �)] is well defined and 
finite. For all � ∈ Ξ , we assume that the function F(x, y) is convex in x ∈ X  and concave in 
y ∈ Y . In addition, we assume that F(x, y) is a Lipschitz continuous function.

There are three main challenges in developing an efficient solver for the large-scale 
minimax problem (1). First, the solver should generate converging iterates. In contrast to 
convex optimization, convergence results for minimax problems are harder to obtain. Sec-
ond, the solver should be able to take advantage of parallel computing in a communication-
efficient way. Only then can it be applied to problems with large-scale datasets, which are 
often distributed across multiple workers. Third, it is desirable for the solver to choose 
learning rates in an adaptive manner. It is well known that, in minimax problems, solver 
performance is susceptible to learning rates. We discuss these challenges in detail below.

First, it has been shown that direct application of the (stochastic) gradient descent ascent 
((S)GDA) to solve (1) may result in divergence of the iterates (Mertikopoulos et al., 2019; 
Daskalakis et al., 2018; Gidel et al., 2019; Mertikopoulos et al., 2018). Possible ways to 
overcome the divergence issue are to apply the primal-dual hybrid gradient (PDHG) or 
(stochastic) extragradient method and their variants (Mertikopoulos et al., 2019; Daskala-
kis et al., 2018; Gidel et al., 2019; Azizian et al., 2020; Liu et al., 2020; Zhao, 2021; Zhang 
et al., 2020).

Second, it is often desirable to have a communication-efficient distributed solver to solve 
the stochastic minimax problem (1). The first reason being that the minimax problem (1) is 
often instantiated as a finite-sum problem with large-scale datasets (with the distribution P 
being the empirical distribution over millions of data points), and thus storing and manipu-
lating datasets on multiple workers is a must. For example, when problem (1) is specified 
as BigGAN Brock et al. (2019) over ImageNet (Deng et al., 2009), the number of training 
samples is as many as 14 million. Traditional distributed SGDA on the problem (1) may 
suffer from a considerable communication burden; reducing communication complexity of 
the algorithm is a major concern in our paper. The second reason is that, in some scenarios, 
data are distributed on mobile devices (such as cell phones or smart watches), and due to 
privacy concerns, local data must stay on the device. Furthermore, frequent communica-
tion among devices is not feasible due to failures of mobile devices (network connectiv-
ity, battery level, etc.). This further motivates the design of communication-efficient dis-
tributed solvers to eliminate central data storage and improve communication efficiency. 
For these reasons, communication-efficient distributed solvers for minimax problems have 

(1)min
x∈X

max
y∈Y

{
F(x, y) = ∫Ξ

f (x, y, �)P(d�)

}
,
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been investigated recently (Beznosikov et al., 2021; Deng & Mahdavi, 2021; Hou et al., 
2021; Liu et al., 2020).

Third, the performance of stochastic minimax solvers for (1) is highly dependent on the 
learning rate tuning mechanism (Heusel et  al., 2017; Antonakopoulos et  al., 2021). And 
yet, designing a solver for (1) with an adaptive learning rate is much more challenging 
compared to the convex case; the value of F at an iterate (x, y) does not serve as a perfor-
mance criterion. For example, for classical minimization problems, the learning rate can be 
tuned based on the loss evaluated at the current iterate, which directly quantifies how close 
the iterate is to the minimum. However, such an approach does not extend to minimax 
problems and, therefore, a more sophisticated approach is required for tuning the learning 
rate. Development of adaptive learning rate tuning mechanisms for large scale stochastic 
minimax problems has been explored only recently (Bach & Levy, 2019; Babanezhad & 
Lacoste-Julien, 2020; Ene & Nguyen, 2020; Antonakopoulos et al., 2021; Liu et al., 2020). 
Hence, we ask

We provide an affirmative answer to this question and develop LocalAdaSEG (local 
adaptive stochastic extragradient) algorithm. Our contributions are three-fold:

Novel communication-efficient distributed minimax algorithm Fig. 1 illustrates the dif-
ference between LocalAdaSEG algorithm and the existing works. LocalAdaSEG falls 
under the umbrella of the Parameter-Server model (Smola & Narayanamurthy, 2010) and 
adopts a periodic communication mechanism to reduce the communication cost between 
the server and the workers, similar to local SGD/FedAvg (Yu et  al., 2019; Stich, 2019; 
Li et al., 2020) in federated learning (McMahan et al., 2021). In addition, in each worker, 
a local stochastic extragradient algorithm with an adaptive learning rate is performed 
independently with multiple iterations. Every once in a while, current iterates and adap-
tive learning rates from all workers are sent to the server. The server computes a weighted 
average of the iterates, where the weights are constructed from the received local adaptive 
learning rates. We emphasize that adaptive learning in each worker is distinct from oth-
ers and is automatically updated according to local data as is done in (Chen et al., 2021; 
Beznosikov et  al., 2021), and different from the existing adaptive distributed algorithms 
(Xie et al., 2019; Reddi et al., 2021; Chen et al., 2021).

Theoretically optimal convergence rate Let M denote the number of workers, � denote 
the variance of stochastic gradients, and T denote the number of local iterations on each 
worker. For stochastic convex-concave minimax problems, we establish the rate in terms of 

Can we develop an efficient algorithm for the stochastic minimax problem

(1)that enjoys convergence guarantees, communication-efficiency and

adaptivity simultaneously?

Fig. 1  A Venn Diagram for 
related works. Left circle: 
communication-efficient methods 
for stochastic minimax problems. 
Right circle: Adaptive methods 
for stochastic minimax problems
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the duality gap metric (Nemirovski, 2004; Lin et al., 2020) as Õ(𝜎∕
√
MT) in the nonsmooth 

and noise-dominant case and the rate Õ(𝜎∕
√
MT + higher-order terms) in smooth case 

with slow cumulative gradient growth. The terms depending on the variance � achieve the 
statistical lower bound and are not improvable without further assumptions. Therefore, the 
LocalAdaSEG algorithm enjoys the linear speed-up property in the stochastic gradient vari-
ance term due to the periodic communication mechanism.

Experimental verification. We conduct several experiments on the stochastic bilinear 
game and the Wasserstein GAN (Arjovsky et al., 2017) to verify the efficiency and effec-
tiveness of the LocalAdaSEG algorithm. We also extend the LocalAdaSEG algorithm to 
solve the challenging federated GANs in a heterogeneous setting. The experimental results 
agree with the theoretical guarantees and demonstrate the superiority of LocalAdaSEG 
against several existing minimax optimizers, such as SEGDA (Nemirovski, 2004), UMP 
(Bach & Levy, 2019), ASMP (Ene & Nguyen, 2020), LocalSEGDA (Beznosikov et  al., 
2021), LocalSGDA (Deng & Mahdavi, 2021), and Local Adam (Beznosikov et al., 2021).

2  Related work

Although there has been a lot of work on minimax optimization, due to space constraints, 
we summarize only the most closely related work. Our work is related to the literature 
on stochastic minimax algorithms, adaptive minimax algorithms, and distributed minimax 
algorithms. We defer a detailed discussion of related work to Section A in the appendix.

Our work and the proposed LocalAdaSEG contribute to the literature described above. 
To our knowledge, the proposed LocalAdaSEG algorithm is the first distributed communi-
cation-efficient algorithm for the stochastic minimax problem and simultaneously supports 
the adaptive learning rate and minibatch size. Moreover, LocalAdaSEG communicates 
only periodically to improve communication efficiency and uses a local adaptive learning 
rate, computed on local data in each worker, to improve the efficiency of computation. In 
addition, LocalAdaSEG can also be applied in a non-smooth setting with the convergence 
guarantee. LocalAdaSEG can be seen as a distributed extension of Bach and Levy (2019) 
with period communication as local SGD (Stich, 2019). We note that only very recently a 
local adaptive stochastic minimax algorithm, called Local Adam, has been used heuristi-
cally to train GANs without a convergence guarantee (Beznosikov et al., 2021). We sum-
marize the relationship with the existing literature in Table 1.

3  Methodology

3.1  Notations and assumptions

A point (x∗, y∗) ∈ X × Y is called a saddle-point for the minimax problem in (1) if for all 
(x, y) ∈ X × Y,

Under the assumptions stated in Sect. 1, the corresponding primal, minx{maxy F(x, y)} , and 
dual problem, maxy{minx F(x, y)} , have optimal solutions and equal optimal values, 
denoted F∗ . The pairs of optimal solutions (x∗, y∗) form the set of saddle-points of F on 

(2)F(x∗, y) ≤ F(x∗, y∗) ≤ F(x, y∗).
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X × Y . We denote ℤ = 𝕏 × 𝕐  , Z = X × Y , z = (x, y) ∈ Z , and z∗ = (x∗, y∗) ∈ Z . We use 
‖ ⋅ ‖X , ‖ ⋅ ‖Y , and ‖ ⋅ ‖Z to denote the Euclidean norms on � , �  , ℤ , respectively, and let 
‖ ⋅ ‖X,∗ , ‖ ⋅ ‖Y,∗ and ‖ ⋅ ‖Z,∗ denote the corresponding dual norms. With this notation, 
‖z‖Z =

�
‖x‖2

X
+ ‖y‖2

Y
 and ‖z‖Z,∗ =

�
‖x‖2

X,∗
+ ‖y‖2

Y,∗
 . Throughout the paper, we focus 

on the Euclidean setting, but note that the results can readily generalize to non-Euclidean 
cases.

We are interested in finding a saddle-point of F over X × Y . For a candidate solution 
z̃ = (x̃, ỹ) ∈ Z , we measure its quality by the duality gap, defined as

The duality gap is commonly used as a performance criterion for general convex-concave 
minimax problems (see, e.g., Nemirovski (2004); Lin et al. (2020)). Note that for all z ∈ Z 
it holds DualGap(z) ≥ 0 and DualGap(z) = 0 if and only if z is a saddle-point.

For the stochastic minimax problem (1), we assume that neither the function 
F(x, y) nor its sub/supgradients in x and y are available. Instead, we assume access to 
an unbiased stochastic oracle G(x, y, �) = [Gx(x, y, �),−Gy(x, y, �)] , such that the vector 
��[G(x, y, �)] is well-defined and ��[G(x, y, �)] ∈ [�xF(x, y),−�yF(x, y)] . For notational 
convenience, we let

Below, we impose assumptions on the minimax problem  (1) and the stochastic gradient 
oracle (4).

Assumption 1 (Bounded domain) There exists D such that supz∈Z
1

2
‖z‖2 ≤ D2.

Assumption 2 (Bounded stochastic gradients) There exists G such that supz∈Z ‖G̃(z)‖∗ ≤ G , 
P-almost surely.

Domain boundedness Assumption  1 is commonly assumed in the convex-concave 
minimax literature; see references in Sect.  1. However, we note that the assumption 
might be removed in certain settings. For example, (Chen et  al., 2014; Monteiro & 
Svaiter, 2011) use a perturbation-based variant of the duality gap as the convergence 
criterion, and (Antonakopoulos et  al., 2021) handles unbounded domains via the 
notion of local norms, while (Zhao, 2021) handles unbounded domains with access 
to a convex optimization oracle. The almost sure boundedness Assumption  2 on the 
gradient oracle seems restrictive but is common in the literature on adaptive stochas-
tic gradient methods [(see, e.g., Duchi et  al. (2011), Chen et  al. (2019a), Bach and 
Levy (2019), Liu et al. (2020)]. In Remark 2 we discuss how to extend our analysis to 
unbounded oracles.

Assumption 3 (Bounded variance) There exists � such that �𝜉

�‖G(z) − G̃(z)‖2
∗
� z� ≤ 𝜎2 

for P-almost every z.

We separately analyze the case when the saddle function F is differentiable with 
Lipschitz gradients.

(3)DualGap(z̃) ∶= max
y∈Y

F(x̃, y) −min
x∈X

F(x, ỹ).

(4)G̃(z) ∶= G(x, y, 𝜉), G(z) ∶= �𝜉[G(x, y, 𝜉)].
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Assumption 4 (Smoothness) Assume that for all z, z� ∈ Z , we have ‖G(z) − G(z�)‖∗ ≤ L‖z − z�‖.

3.2  LocalAdaSEG Algorithm

We introduce the LocalAdaSEG algorithm used to solve (1) and describe its main features. 
Algorithm 1 details the procedure.

The Parameter-Server model LocalAdaSEG uses M parallel workers which, in each 
of R rounds, independently execute K steps of extragradient updates (Line  12). The 
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adaptive learning rate is computed solely based on iterates occurred in the local worker 
(Line 4). Let S ∶= {0,K, 2K,… ,RK = T} denote the time points of communication. At 
a time of communication ( t ∈ S + 1 , Lines 5–8), the workers communicate and compute 
the weighted iterate, z̃◦

t−1
 , defined in Line 7. Then the next round begins with a common 

iterate z̃◦
t−1

 . Finally, LocalAdaSEG outputs the average of the sequence {zm
t
}m∈[M],t∈[T] . 

Overall, each worker computes T = KR extragradient steps locally, for a total of 2MT 
stochastic gradient calls (since each extragradient step, Line  12, requires two calls of 
gradient oracle) with R rounds of communication (every K steps of computation).

Extragradient step At the time when no communication happens ( t − 1 ∉ S ), Line 12 
reduces to

where ΠZ(z) = argminz�∈Z‖z − z�‖2 is the projection operator onto the compact set Z . The 
above update is just the extragradient (EG) algorithm Korpelevich (1976) that is commonly 
used to solve minimax problems; see references in Sect. 1.

Periodic averaging weights The proposed weighted averaging scheme in Line  7 is 
different from existing works on local SGD and Local Adam (Beznosikov et al., 2021). 
At the time of averaging ( t−1∈S ), LocalAdaSEG pulls the averaged iterate towards 
the local iterate with a smaller learning rate. For the homogeneous case studied in this 
paper, we expect wm ∼ 1∕M.

Intuition of local adaptive learning rate scheme. The adaptive learning rate scheme (Line 4) 
follows that of Bach and Levy Bach and Levy (2019) closely. To develop intuition, consider the 
deterministic setting where � = 0 and define (�m

t
)2 ∶= ‖gm

t
‖2
∗
+ ‖Mm

t
‖2
∗
 . If we ignore the pro-

jection operation, the learning rate �m
t

 would look like �m
t
∼ 1∕(1 +

∑t−1

�=1
(�m

�
)2)1∕2 . In the nons-

mooth case, the subgradients might not vanish as we approach the solution (in the case of convex 
optimization, consider the function f (x) = |x| near 0), and we only have lim inft→∞ 𝛿m

t
> 0 . This 

implies �m
t

 will vanish at the rate 1∕
√
t , which is the optimal learning rate scheme for nonsmooth 

convex-concave problems (Bach & Levy, 2019; Antonakopoulos et al., 2021). For the smooth 
case, one might expect the sequence {�m

t
}t to be square-summable and 𝜂m

t
→ 𝜂m

∞
> 0 , in which 

case the learning rate does not vanish. Additionally, the adaptive learning rate for each worker is 
locally updated to exploit the problem structure available in worker’s local dataset. This makes 
our local adaptive learning rate scheme distinct compared to existing distributed adaptive algo-
rithms for minimization problems (Xie et al., 2019; Reddi et al., 2021; Chen et al., 2021). Very 
recently, (Beznosikov et al., 2021) used local Adam for training conditional GANs efficiently, but 
they provide theoretical guarantees only for the local extragradient without adaptivity.

Adaptivity to (G, L, �) . Our algorithm does not require knowledge of problem param-
eters such as the size of the gradients G, the smoothness L, or the variance of gradient 
estimates � . Instead, we only need an initial guess of G, denoted G0 , and the diameter of 
the feasible set, D. Following (Bach & Levy, 2019), we define

This quantity measures how good our guess is and appears in the convergence guarantees 
for the algorithm. Our algorithm still requires knowledge of the problem class, as we need 
to use a different base learning rate, � , for smooth and nonsmooth problems; see Theo-
rems 1 and 2, respectively.

zm
t
= ΠZ[z̃

m
t−1

− 𝜂m
t
Mm

t
] with Mm

t
= G̃(z̃m

t−1
),

z̃m
t
= ΠZ[z̃

m
t−1

− 𝜂m
t
gm
t
] with gm

t
= G̃(zm

t
),

(5)� ∶= max{G∕G0,G0∕G} ≥ 1.
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3.3  Convergence results

We state two theorems characterizing the convergence rate of LocalAdaSEG for the 
smooth and nonsmooth problems. We use the notation Õ to hide absolute constants and 
logarithmic factors of T = KR and problem parameters. The proofs are given in Sec-
tion C.1 and Section C.2 of the appendix. Recall the definition of � in (5).

Theorem  1 (Nonsmooth Case) Assume that Assumptions 1, 2, and 3 hold. Let 
z̄ = LocalAdaSEG(G0,D;K,M,R;1) . Then

Theorem 2 (Smooth case) Assume that Assumptions 1, 2, 3, and 4 hold.

Let z̄ = LocalAdaSEG(G0,D;K,M,R;1∕
√
M) . Define the cumulative norms of stochas-

tic gradients occurred on worker m as

Then

Remark 1 (The term V1(T) .) Note that by symmetry Vm(T) = V1(T) for all m. Although 
a trivial bound on V1(T) is V1(T) ≤ G

√
2T  , typically we have V1(T) ≪

√
T  in prac-

tice (Duchi et al., 2011; Reddi et al., 2018; Chen et al., 2019b, a; Liu et al., 2020), espe-
cially in the sparse data scenarios. For example, consider the bilinear saddle-point prob-
lem minx∈X maxy∈Y

�
x⊤(

∑n

i=1
piMi)y

�
 , where a larger weight pi > 0 means the matrix Mi 

appears more frequently in the dataset. When most of matrices with large weights are row-
sparse and column-sparse, the quantity V1(T) is much smaller than G

√
2T  . Theorem 5, in 

the appendix, shows that with a different choice of the base learning rate � one can obtain a 
near linear speed-up result, which removes the dependence on V1(T) : for large T,

for any � ∈ (0,
1

2
) . Following the discussion in Chen et al. (2019b), Liu et al. (2020), when 

the cumulative growth of the stochastic gradient is slow, i.e., V1(T) = O(Tb) for some 
0 < b <

1

2
 , then the second term in (7) is O(DM3∕2∕T1−b) and linear speed-up is achieved, 

since as T → ∞ , the dominating term become O(�D∕
√
MT).

Remark 2 (Extension to unbounded stochastic gradient oracle) Our analysis can be 
extended to unbounded homogeneous and light-tailed oracles using the following argu-
ment. Let

�[DualGap(z̄)] = Õ

�
𝛾GD√

T
+

𝜎D√
MT

�
.

(6)Vm(T) ∶= �

⎡⎢⎢⎣

���� T�
t=1

‖gmt ‖2∗ + ‖Mm
t ‖2∗

⎤⎥⎥⎦
.

(7)�[DualGap(z̄)] = Õ

�
𝜎D√
MT

+
D
√
MV1(T)

T
+

𝛾2LD2M−1∕2

T
+

𝛾GD
√
M

T

�
.

�[DualGap(z̄)] = Õ

�
𝜎D√
MT1−2𝜖

+
𝛾2LD2

T1−2𝜖
+

LD2M

T
+

𝛾GDM3∕2

T1+𝜖

�
,
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which upper bounds the expectation of the SG oracle. Assume ‖G̃(z) − G(z)‖∗∕‖G‖∞ is 
independent of z and follows the distribution of the absolute value of a standard normal. 
Define the set Z� ∶= {zm

t
, z̃

m,∗

t−1
}t,m of all iterates. For any 0 < 𝛿 < 1 , define the event

Then ℙ(E) ≥ 1 − � ; see Appendix B.1. We can repeat the Proof of Theorems 1 and 2 on the 
event E and interpret our results with G replaced by GT ,� , which effectively substitutes G 
with ‖G‖∞ at the cost of an extra log(T) factor.

Remark 3 (Baseline 1: Minibatch EG) We comment on the performance of an obvious 
baseline that implements minibatch stochastic EG using M workers. Suppose the algorithm 
takes R extragradient steps, with each step using a minibatch of size KM, resulting in a 
procedure that communicates exactly R times. The performance of such a minibatch EG for 
general nonsmooth and smooth minimax problems (Bach & Levy, 2019; Ene & Nguyen, 
2020) is, respectively,1 

Under the same computation and communication structure, our algorithm enjoys adaptiv-
ity, achieves the same linear speed-up in the variance term �D√

KMR
 , and improves dependence 

on the gradient upper bound ‖G‖∞ and the smoothness parameter L, which is a desirable 
property for problems where these parameters are large.

Remark 4 (Baseline 2: EG on a single worker) Another natural baseline is to run EG 
on a single worker for T iterations with batch-size equal to one. The convergence rates 
for this procedure in nonsmooth and smooth cases are O(�D∕

√
T + ‖G‖∞D∕

√
T) and 

O(�D∕
√
T + LD2∕T) , respectively. In the smooth case, EG on a single worker is inferior 

to minibatch EG, since the dominant term for the former is 1∕
√
T  , but it is 1∕

√
MT  for 

the latter. On the other hand, in the nonsmooth case, minibatch EG reduces the variance 
term, but the term involving the deterministic part degrades. Therefore, in the nonsmooth 
case, we can only claim that the minibatch EG is better than the single-worker mode in the 
noise-dominant regime � = Ω(‖G‖∞

√
M).

Remark 5 (On the choice of K) Consider the baseline minibatch EG (see Remark 3) which 
runs as follows: the algorithm takes R extragradient steps, with each step using a minibatch 
of size KM, resulting in a procedure that communicates exactly R times. Note this proce-
dure has exactly the same computation and communication structure as LocalAdaSEG , 
facilitating a fair comparison. In the non-smooth case, our theory shows that LocalAdaSEG 
dominates minibatch EG regardless of the choice K. Therefore, let us focus the discussion 

‖G‖∞ ∶= sup
z∈Z

‖G(z)‖∗ < ∞,

E ∶=

�
max
z�∈Z�

‖G̃(z�) − G(z�)‖∗ ≤ GT ,𝛿 ∶= ‖G‖∞ ⋅

�√
2 log(4MT) +

√
2 log(2∕𝛿)

��
.

O

�
�D√
KMR

+
‖G‖∞D√

R

�
and O

�
�D√
KMR

+
LD2

R

�
.

1 These bounds hold due to Theorem 4 of Ene and Nguyen (2020), whose rates for nonsmooth and smooth 
problems are of the form O(R(G + �)∕

√
T) and O(�R2∕T + R�∕

√
T) , respectively. The claim follows with 

� in the original theorem statement replaced by �∕
√
KM , � by L, R by D, G by ‖G‖∞ , and T by R.
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on the smooth loss with slow gradient growth case. Suppose that the gradient growth term 
Vm(T) ∶= �

�
(
∑T

t=1
��gmt ��2∗ + ��Mm

t
��2∗)1∕2

�
 admits a rate Vm(T) = O(Tb) for some 

0 < b < 1∕2 . Theorem 2 then shows that LocalAdaSEG enjoys a convergence rate (ignor-
ing problem parameters L, D and G)

where M is the number of machines, R the communication rounds, and K is the length 
between two communications. The minibatch EG attains the convergence rate

Both algorithms achieve linear speedup, i.e., the dominant term is O(�∕
√
MKR) . In order 

for LocalAdaSEG to be comparable with minibatch EG in the higher order term, we set √
M∕(KR)1−b = Θ(1∕R) and 

√
M∕(KR) = O(1∕R) and obtain K = Θ(

√
MTb) . With this 

choice of K, LocalAdaSEG achieves a communication efficiency no worse than minibatch 
EG with the crucial advantage of being tuning-free. Compared with case of optimizing 
strongly-convex functions, local SGD needs K = O(

√
T) to achieve linear speedup (Stich, 

2019). The discussion here is purely theoretical, since the exponent of gradient growth b is 
hard to estimate in practice.

Proof Sketch of Theorem 2 We present a proof sketch for the smooth case. Recall the update 
formula

Figure 2 provides a computation diagram and illustrates the relationship between the above 
variables.

We define the noise in the gradient operator G by

1√
MKR

+

√
M

(KR)1−b
+

√
M

KR
,

1√
MKR

+
1

R
.

zm
t
= ΠZ[z̃

m,∗

t−1
− 𝜂m

t
Mm

t
] with Mm

t
= G̃(z̃m,∗

t−1
),

z̃m
t
= ΠZ[z̃

m,∗

t−1
− 𝜂m

t
gm
t
] with gm

t
= G̃(zm

t
).

Fig. 2  The computation diagram for LocalAdaSEG . Left panel: computation on machine m when no com-
munication ( t ∉ S ). Right panel: computation on machine m when on communication round ( t ∈ S)
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Moreover, we define a gradient-like quantity

If we ignore the projection operator in the update, the term (Zm
t
) will be of a similar scale as 

the gradients G̃(zm
t
) and G̃(z̃m

t
).

We begin with the following decomposition: for all z ∈ Z,

where we have used a descent lemma for EG updates common in the literature (Lemma 4 
in our paper). The reason we care about the above quantity is that by the convexity-concav-
ity of the problem, the duality gap metric can be upper-bounded by this term.

Next, we analyze each term separately. The term I(z) characterizes the noise of the prob-
lem and eventually contributes to the noise term �√

KMR
 . For the term II we use a telescoping 

argument and show that it can be upper bounded by 
∑

m,t �
m
t
(Zm

t
)2 . The telescoping argu-

ment can be applied due to the averaging weights wm
t
 in the algorithm. The term III is nega-

tive. We keep the tail part of III which cancels the tail part of the term IV. For the term IV 
we use the smoothness property of the problem and show that it can be bounded by ∑

m,t (�
m
t
)2(Zm

t
)2 . Finally, two sums of the form 

∑
m,t �

m
t
(Zm

t
)2 and 

∑
m,t (�

m
t
)2(Zm

t
)2 remain to 

be handled. For this we use the well-known basic inequality ∑n

i=1
ai∕(a0 +

∑i−1

j=1
aj) = O(log(1 +

∑
i ai)) and 

∑n

i=1
ai∕

�
a0 +

∑i−1

j=1
aj = Θ(

√∑
i ai) for 

positive numbers ai’s.

𝜉m
t
∶= G(zm

t
) − gm

t
= G(zm

t
) − G̃(zm

t
).

(
Zm
t

)2
∶=

‖‖‖zmt − z̃
m,∗

t−1

‖‖‖
2

+ ‖‖zmt − z̃m
t
‖‖2

5
(
𝜂mt

)2 .
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Nonadaptive local algorithms rely on choosing a vanishing stepsize that is usually 
inversely proportional to a prespecified number of total iterations T. The freedom to choose 
the stepsize based on a prespecified T is crucial in the proofs of these algorithms and allows 
canceling of the asynchronicity of updates caused by local updates and the bias in those 
updates caused by data heterogeneity. This is the case for both convex optimization and 
convex-concave optimization. However, in the adaptive algorithm regimes, such a proof 
technique is clearly not viable.

Our algorithm requires a carefully designed iterates averaging scheme, with weight 
inversely proportional to stepsize. Such averaging-scheme is designed to account for the 
asynchronicity of local iterates and is automatically determined by the optimization pro-
cess. This is what enables the extension of an Adam-type stepsize to parallel settings, 
which is highly nontrivial.   ◻

4  Experiments

We apply LocalAdaSEG to the stochastic bilinear minimax problem introduced in Gidel et al. 
(2019), Beznosikov et al. (2021) and train the Wasserstein generative adversarial neural net-
work (Wasserstein GAN) (Arjovsky et al., 2017). For the homogeneous setting, to demonstrate 
the efficiency of our proposed algorithm, we compare LocalAdaSEG with minibatch stochas-
tic extragradient gradient descent (MB-SEGDA) (Nemirovski, 2004), minibatch universal 
mirror-prox (MB-UMP) (Bach & Levy, 2019), minibatch adaptive single-gradient mirror-Prox 
(MB-ASMP) (Ene & Nguyen, 2020), extra step local SGD (LocalSEGDA) (Beznosikov et al., 
2021), and local stochastic gradient descent ascent (LocalSGDA) (Deng & Mahdavi, 2021). 
We further extend the proposed LocalAdaSEG algorithm to solve federated WGANs with a 
heterogeneous dataset to verify its efficiency. To validate the practicality of LocalAdaSEG , 
we also train the BigGAN (Brock et al., 2019) over CIFAR10 dataset under the heterogeneous 
setting. In this setting, we also compare LocalAdaSEG with Local Adam (Beznosikov et al., 
2021). We emphasize here that whether Local Adam converges is still an open question, even 
for the stochastic convex-concave setting.

4.1  Stochastic bilinear minimax problem

We consider the stochastic bilinear minimax problem with box constraints

where

Here Cn = [−1, 1]n is a box in ℝn , the tuple (A, b, c) is deterministic, and the perturbation 
variable � follows the normal distribution with variance � . We define the KKT residual 
Res(x, y) as:

(8)min
x∈Cn

max
y∈Cn

F(x, y)

F(x, y) ∶= �𝜉∼P

[
x⊤Ay + (b + 𝜉)⊤x + (c + 𝜉)⊤y

]
,

Res(x, y)2 ∶=‖x − ΠCn (x − (Ay + b))‖2
+ ‖y − ΠCn (y + (Ax + c))‖2.



 Machine Learning

1 3

It is not hard to verify that given (x∗, y∗) ∈ ℝ
n ×ℝ

n , Res(x∗, y∗) = 0 if and only if (x∗, y∗) 
belongs to the set of saddle-points of the bilinear minimax problem (8). During experi-
ments, we use Res(x, y) to measure the quality of the approximate solution obtained by 
different optimizers.

Dataset generation We uniformly generate b and c in [−1, 1]n with n = 10 . The sym-
metric matrix A is constructed as A = Ā∕max

(|b|max, |c|max

)
 , where Ā ∈ [−1, 1]n×n is a 

random symmetric matrix. We emphasize that A is merely symmetric, but not semi-
definite. To simulate the distributed environment, we distribute (A,  b,  c) to M workers, 
where M = 4 . Each worker solves the above bilinear problem locally with an optimiza-
tion algorithm. We instantiate LocalAdaSEG with different numbers of local iterations 
K ∈ {1, 5, 10, 50, 100, 250, 500} , and different noise levels � ∈ {0.1, 0.5} , shown in Fig. 3. 
A larger � indicates more noise in the stochastic gradients, making problem  (8) harder. 
Furthermore, we compare LocalAdaSEG by setting the local iteration K = 50 against sev-
eral existing optimizers, illustrated in Fig. 4.

Experimental results In Fig.  3, LocalAdaSEG provides stable convergence results 
under different configurations of local iterations K and noise levels � . Figure (b)(d) illus-
trates that a suitably large K could accelerate the convergence speed of LocalAdaSEG . 

Fig. 3  Subfigures a, b and c, d plot the residual of LocalAdaSEG against the total number of iterations T 
and communications R, with varying numbers of local iterations K. We also investigate the effect of noise 
level ( � = 0.1 in (a), (b) and � = 0.5 in (c), (d))
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Figure (a)(c) illustrates that a large variance would result in unstable optimization tra-
jectories. The findings of the experiment agree with our theoretical predictions: (i) a 
larger T = KR improves convergence; (ii) the variance term dominates the convergence 
rate of LocalAdaSEG ; a large variance term will slow down LocalAdaSEG . In Fig. 4, (a)
(c) illustrate that adaptive variants of stochastic minimax optimizers, i.e., LocalAdaSEG , 
MB-UMP, and MB-ASMP, achieve better performance compared to standard ones such 
as LocalSGDA, LocalSEGDA, and MB-SEGDA, whose learning rates are hard to tune 
for minimax problems. Furthermore, when compared in terms of communication rounds 
in (b)(d), LocalAdaSEG converges faster than other distributed stochastic minimax opti-
mizers, demonstrating the superiority of LocalAdaSEG.

To validate the performance of our proposed method, we conduct the comparison 
of the asynchronous case and the synchronous case of LocalAdaSEG for the stochastic 
bilinear minimax problem. We also compare asynchronous and synchronous cases with 
the single-thread version (SEGDA with MKR iterations) from the aspects of residual 
and wallclock time. Finally, we evaluate the quantity of Vt with the update t. The experi-
mental details are described in Appendix E.1. As can be seen in Fig. E1 (in Appendix 
E.1), compared with synchronous cases, asynchronicity only affects the convergence 
rate that is slower than the synchronous version with respect to the communication 

Fig. 4  Subfigures a, b and c, d compare LocalAdaSEG with existing optimizers. We plot the residuals 
against the total number of iterations T and communications R with different noise levels ( � = 0.1 in (a), (b) 
and � = 0.5 in (c), (d)
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rounds. Compared to SEGDA of MKR iterations, our proposed LocalAdaSEG can 
achieve more stable and better performance. Regarding the quantity of Vt, it is really 
much smaller than the dominant variance term.

4.2  Wasserstein GAN

We train Wasserstein GAN (WGAN) to validate the efficiency of LocalAdaSEG on a real-
world application task. This is a challenging minimax problem as the objectives of both 
generator and discriminator are non-convex and non-concave. The description of the prob-
lem and implementation details are placed in Section E.2.

Experimental results Figure E2 and E3 (in Section E.2) compare MB-UMP, MB-ASMP, 
LocalAdam and LocalAdaSEG in a homogeneous and heterogeneous setting, respectively. 
In Figs. E2a and E3a, MB-UMP, MB-ASMP, LocalAdam and LocalAdaSEG quickly con-
verge to a solution with a low FID value. However, when compared in terms of communi-
cation rounds in Figs. E2b and E3b, LocalAdaSEG and Local Adam converge faster than 
other optimizers and reach a satisfactory solution in just a few rounds. In Figs. E2c and 
E3c, all the listed optimizers achieve a high IS. In particular, the IS of LocalAdaSEG and 
Local Adam increases much faster with less communication than MB-UMP, MB-ASMP as 
shown in Figs. E2d and E3d.

In Figs. E4 and E5, we show and compare the FID and IS of LocalAdaSEG with other 
optimizers under different data distributions. As can be seen from Fig. E4, LocalAdaSEG 
converges faster when the Dirichlet distribution parameter � decreases. In Fig. E5, when 
data distribution changes, our LocalAdaSEG can still converge faster than other existing 
optimizers.

4.3  BigGAN

To validate the practicability of our proposed LocalAdaSEG method, we apply LocaA-
daSEG to train the large-scale BigGAN (Brock et al., 2019) model over the CIFAR10 data-
set. The description of BigGAN and parameter setup are placed in Section E.3.

Experimental results Figure  E6 illustrates the comparison of the FID and IS against 
communication rounds by using LocalAdaSEG and existing optimizers. As can be seen 
from Fig.  E6a, LocalAdaSEG and Local Adam can reach a satisfactory FID value in a 
few rounds. Similarly, from Fig. E6b, we can see that the IS value of LocalAdaSEG and 
Local Adam is much higher than that of MB-UMP and MB-ASMP. In a word, the FID 
and IS values of LocalAdaSEG and Local Adam converge much faster than that of other 
optimizers.

Additional discussions To end this section, we briefly discuss the limitation of current 
work.

Theoretical limitations. Our theory is applicable to the homogeneous setting, meaning 
each worker has access to data from one distribution. However, in practice, data hetero-
geneity is a main factor practitioners must take into account for distributed learning. We 
briefly discuss technical challenges here. For the heterogeneous case, the theory for non-
adaptive algorithms relies on choosing a very small stepsize, usually inverse proportional 
to a prespecified number of total iterations T. The freedom to choose the stepsize based on 
a prespecified T is crucial in those proofs and enables canceling the bias caused by local 
updates, a.k.a. client drifts. The same situation also occurs in the convex optimization case. 
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However, our goal is to have an adaptive algorithm that does not depend on the problem 
parameters or a prespecified T. For this reason, we leave such an important open question 
for future work.

Experimental limitations. In the scale of the dataset, we experimented with should be 
increased to showcase the computation benefit of the proposed algorithm. At the current 
stage we have experimented with MNIST data and further, add CIFAR 10 experiments 
after reviewers’ suggestions. Application to other ultra-large datasets such as ImageNet 
requires significant engineering efforts and will be left for future investigation. We should 
emphasize that our paper mainly contributes to the theoretical understanding of adaptive 
algorithms in distributed settings.

5  Conclusion

We proposed an adaptive communication-efficient distributed stochastic extragradient 
algorithm in the Parameter-Server model for stochastic convex-concave minimax problem, 
LocalAdaSEG . We theoretically showed LocalAdaSEG that achieves the optimal conver-
gence rate with a linear speed-up property for both nonsmooth and smooth objectives. 
Experiments verify our theoretical results and demonstrate the efficiency of LocalAdaSEG.

For future work, since that the current analysis merely holds for the homogeneous set-
ting, a promising direction is to extend the theoretical result of LocalAdaSEG to the hetero-
geneous setting that better models various real-world applications, such as federated GANs 
(Beznosikov et  al., 2021) and robust federated learning (Deng et  al., 2020). In addition, 
extending theoretical results from the stochastic convex-concave setting to the stochastic 
nonconvex-(non)concave setting is an interesting and challenging research direction.
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