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The Backstory – Online Stochastic Bin Packing

Goal: Irrevocably pack items on arrival to minimize expected number of bins used

Main Result: A distribution-agnostic Primal-Dual (backpressure type) algorithm
+ Allows proving regret results for non-stationary arrivals
- Does not exploit nicer instances (e.g., i.i.d.) via intentional learning

Agenda: What is the “best” way to combine learning-based and agnostic control 
algorithms to get best-of-both-worlds guarantees?

p2

p3

p1

Infinite collection of bins of integer size Bn i.i.d. items arrive from an unknown distribution

* Interior-Point-Based Online Stochastic Bin Packing. Gupta, Radovanovic. OR 2020.
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Stationary Linear Quadratic Regulator system

A discrete time, continuous space MDP
• State: 𝑥𝑥𝑡𝑡 ∈ ℝ𝑛𝑛

• Action: 𝑢𝑢𝑡𝑡 ∈ ℝ𝑑𝑑

• Parameter: Θ = [A B]
• Dynamics:

𝑥𝑥𝑡𝑡+1 = A � 𝑥𝑥𝑡𝑡 + B � 𝑢𝑢𝑡𝑡 + 𝑤𝑤𝑡𝑡
• Cost:

𝑐𝑐𝑡𝑡 𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 = 𝑥𝑥𝑡𝑡𝑇𝑇Q𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡𝑇𝑇R𝑢𝑢𝑡𝑡

Goal: Minimize infinite horizon average cost

𝐽𝐽 = lim
𝑇𝑇→∞

1
𝑇𝑇
𝐄𝐄�
𝑡𝑡=1

𝑇𝑇

𝑥𝑥𝑡𝑡𝑇𝑇Q𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡𝑇𝑇R𝑢𝑢𝑡𝑡

𝑤𝑤𝑡𝑡~𝒩𝒩 0,𝑊𝑊
𝜓𝜓 � 𝐼𝐼𝑑𝑑 ≼ 𝑊𝑊 ≼ Ψ � 𝐼𝐼𝑑𝑑



Stationary LQR preliminaries

Dynamics: 𝑥𝑥𝑡𝑡+1 = 𝐴𝐴 � 𝑥𝑥𝑡𝑡 + 𝐵𝐵 � 𝑢𝑢𝑡𝑡 + 𝑤𝑤𝑡𝑡
Cost: 𝑐𝑐𝑡𝑡 𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 = 𝑥𝑥𝑡𝑡𝑇𝑇Q𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡𝑇𝑇R𝑢𝑢𝑡𝑡

Linear feedback controllers: 𝑢𝑢𝑡𝑡 = 𝐾𝐾𝑥𝑥𝑡𝑡

Average cost 𝐽𝐽 Θ,𝐾𝐾 and bias function 𝑃𝑃 Θ,𝐾𝐾 satisfy the Bellman recursion:

𝑥𝑥𝑇𝑇𝑃𝑃𝑥𝑥 = 𝑥𝑥𝑇𝑇𝑄𝑄𝑥𝑥 + 𝐾𝐾𝑥𝑥 𝑇𝑇𝑅𝑅 𝐾𝐾𝑥𝑥 − 𝐽𝐽 + 𝐄𝐄 𝑥𝑥1𝑇𝑇𝑃𝑃𝑥𝑥1|𝑥𝑥0 = 𝑥𝑥

Which gives,
𝑃𝑃 = 𝑄𝑄 + 𝐾𝐾𝑇𝑇𝑅𝑅𝐾𝐾 + 𝐴𝐴 + 𝐵𝐵𝐾𝐾 𝑇𝑇𝑃𝑃(𝐴𝐴 + 𝐵𝐵𝐾𝐾),

𝐽𝐽 = 𝐄𝐄 𝑤𝑤𝑇𝑇𝑃𝑃𝑤𝑤 = 𝑇𝑇𝑇𝑇(𝑃𝑃 � 𝑊𝑊).

Optimal controller: 𝐾𝐾∗ Θ = argmin
𝐾𝐾

𝐽𝐽(Θ,𝐾𝐾)



The non-stationary LQR learning and control problem

Finite horizon MDP
• Unknown parameter sequence: Θ1,Θ2,⋯ ,Θ𝑇𝑇 ; Θ𝑡𝑡 = [A𝑡𝑡 B𝑡𝑡]
• Sublinear variation: 𝑉𝑉𝑇𝑇 is 𝑜𝑜 𝑇𝑇 ,

𝑉𝑉𝑇𝑇 = �
𝑡𝑡=1

𝑇𝑇−1

Θ𝑡𝑡+1 − Θ𝑡𝑡 𝐹𝐹

• Dynamics:
𝑥𝑥𝑡𝑡+1 = A𝑡𝑡 � 𝑥𝑥𝑡𝑡 + B𝑡𝑡 � 𝑢𝑢𝑡𝑡 + 𝑤𝑤𝑡𝑡

• Cost:
𝑐𝑐𝑡𝑡 𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡 = 𝑥𝑥𝑡𝑡𝑇𝑇Q𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡𝑇𝑇R𝑢𝑢𝑡𝑡

Goal: Minimize finite horizon regret

𝑅𝑅𝑇𝑇 = 𝐄𝐄�
𝑡𝑡=1

𝑇𝑇

𝑥𝑥𝑡𝑡𝑇𝑇Q𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡𝑇𝑇R𝑢𝑢𝑡𝑡 − min
𝜋𝜋

𝐄𝐄�
𝑡𝑡=1

𝑇𝑇

𝑥𝑥𝑡𝑡𝑇𝑇Q𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡𝑇𝑇R𝑢𝑢𝑡𝑡

Remark: The optimal 𝜋𝜋 is also a linear feedback controller 𝑢𝑢𝑡𝑡 = 𝐾𝐾𝑡𝑡∗𝑥𝑥𝑡𝑡

Non-anticipative; knows Θ𝑡𝑡



Short literature review

Stationary LQR with unknown dynamics -- 𝒪𝒪( 𝑇𝑇) regret is tight 
Abbasi-Yadkori and Szepesvari (2011), Ibrahimi et al. (2012), Cohen et al. 
(2019), Faradonbeh et al. (2020), Mania et al. (2020), Simchowitz and 
Foster (2020), Cassel et al. (2020)

Learning and control of non-stationary MDPs with finite state and 
action spaces

Gajane et al. (2018), Cheung et al. (2020), Mao et al. (2021) 

LQR with non-stationarity
• Hazan et al. (2020) : Known 𝐴𝐴,𝐵𝐵 but adversarial noise
• Simchowitz et a. (2020) : Disturbance feedback controller for adversarial 

noise
• Goel and Hassibi (2020) : Known 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 but adversarial noise
• Gradu et al. (2020) : Unknown 𝐴𝐴𝑡𝑡 ,𝐵𝐵𝑡𝑡 but observed after choosing 𝑢𝑢𝑡𝑡
• Lin et al. (2021) : Controller receives 𝐴𝐴𝑠𝑠 ,𝐵𝐵𝑠𝑠 ,𝑤𝑤𝑠𝑠 for 𝑠𝑠 = 𝑡𝑡, … , 𝑡𝑡 + 𝑘𝑘 − 1
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A naïve exploration algorithm
(Simchowitz and Foster, 2020)

Takeaway: LQR = bandit with linear feedback and quadratic loss

Linear feedback: Unknown Θ = 𝐴𝐴 𝐵𝐵 but observe

𝑥𝑥𝑡𝑡+1 = Θ
𝑥𝑥𝑡𝑡
𝑢𝑢𝑡𝑡 + 𝑤𝑤𝑡𝑡 𝑧𝑧𝑡𝑡 =

𝑥𝑥𝑡𝑡
𝑢𝑢𝑡𝑡



A naïve exploration algorithm
(Simchowitz and Foster, 2020)

Takeaway: LQR = bandit with linear feedback and quadratic loss

Linear feedback: Unknown Θ = 𝐴𝐴 𝐵𝐵 but observe
𝑥𝑥𝑡𝑡+1 = Θ � 𝑧𝑧𝑡𝑡 + 𝑤𝑤𝑡𝑡

Quadratic loss: True dynamics Θ, estimated dynamics �Θ, control 𝐾𝐾 = 𝐾𝐾∗ �Θ
Theorem (Simchowitz, Foster): There exist constants 𝐶𝐶1,𝐶𝐶2 such that

Θ − �Θ 𝐹𝐹 ≤ 𝐶𝐶1 ⟹ 𝐽𝐽 Θ,𝐾𝐾 − 𝐽𝐽∗(Θ) ≤ 𝐶𝐶2 Θ − �Θ 𝐹𝐹
2

.

𝑧𝑧𝑡𝑡 =
𝑥𝑥𝑡𝑡
𝑢𝑢𝑡𝑡



A naïve exploration algorithm
(Simchowitz and Foster, 2020)

Idea: Create phases of doubling durations for exploration/exploitation

Estimate how? Ordinary Least Squares

�Θ𝑖𝑖 = argmin
�Θ

�
𝑡𝑡 ∈ phase 𝑖𝑖

𝑥𝑥𝑡𝑡+1 − �Θ � 𝑧𝑧𝑡𝑡
2

Play how? With exploration noise. For 𝑡𝑡 ∈ phase 𝑖𝑖,
𝑢𝑢𝑡𝑡 = 𝐾𝐾𝑖𝑖 � 𝑥𝑥𝑡𝑡 + 𝜎𝜎𝑖𝑖 � 𝜂𝜂𝑡𝑡

Intuition for 𝝈𝝈𝒊𝒊:
Total cost of exploration in phase 𝑖𝑖 ≈ 2𝑖𝑖 � 𝜎𝜎𝑖𝑖2

Variance of �Θ𝑖𝑖 ≈ �1 2𝑖𝑖�𝜎𝜎𝑖𝑖
2

Cost of estimation error ≈ �2𝑖𝑖 2𝑖𝑖�𝜎𝜎𝑖𝑖2 ≈ 1/𝜎𝜎𝑖𝑖2

phase 𝑖𝑖 phase 𝑖𝑖 + 1 phase 𝑖𝑖 + 2

play 𝐾𝐾𝑖𝑖

estimate �Θ𝑖𝑖

play 𝐾𝐾𝑖𝑖+1 = 𝐾𝐾∗(�Θ𝑖𝑖)

estimate �Θ𝑖𝑖+1

play 𝐾𝐾𝑖𝑖+2 = 𝐾𝐾∗(�Θ𝑖𝑖+1)

estimate �Θ𝑖𝑖+2

𝜂𝜂𝑡𝑡~𝒩𝒩 0, 𝐼𝐼

𝜎𝜎𝑖𝑖2 ≈ 1/ 2𝑖𝑖

Balance these two



A randomized lower bound instance
(Cassel et al., 2020)

• 𝑛𝑛 = 𝑑𝑑 = 1
• 𝑎𝑎 = 1/3
• 𝑏𝑏 = ±1/𝑇𝑇1/4 with equal probability

Theorem (Cassel et al., 2020): For 𝑇𝑇 large enough, for any deterministic 
algorithm

𝐸𝐸 𝑅𝑅𝑇𝑇 = Ω 𝑇𝑇 .

Idea:

Cost of not learning 𝑏𝑏 = Ω 𝑇𝑇 .

Cost of exploration noise needed to learn 𝑏𝑏 = Ω 𝑇𝑇 .
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A lower bound instance

Recall variation: 𝑉𝑉𝑇𝑇 = ∑𝑡𝑡=1𝑇𝑇−1 Θ𝑡𝑡+1 − Θ𝑡𝑡 𝐹𝐹

Theorem: For 𝑇𝑇 large enough, 𝑉𝑉𝑇𝑇 = �Θ 𝑇𝑇𝛼𝛼 for 𝛼𝛼 ∈ (0,1), for any 
deterministic algorithm

𝐸𝐸 𝑅𝑅𝑇𝑇 = Ω 𝑉𝑉𝑇𝑇
2/5𝑇𝑇3/5 .

Idea: Extend stationary LQR lower bound; define  𝜀𝜀 = 𝑉𝑉𝑇𝑇
𝑇𝑇

1/5

𝑇𝑇𝜀𝜀4 phases of duration ⁄1 𝜀𝜀4 each
𝑏𝑏𝑡𝑡 re-randomized at the beginning of each phase to be ±𝜀𝜀

Total regret ≈ 𝑇𝑇𝜀𝜀4 � ⁄1 𝜀𝜀2 = 𝑇𝑇𝜀𝜀2 = Ω 𝑉𝑉𝑇𝑇
2/5𝑇𝑇3/5 .

phase 𝑖𝑖 phase 𝑖𝑖 + 1 phase 𝑖𝑖 + 2

Expected regret  = ⁄1 𝜀𝜀2 Expected regret  = ⁄1 𝜀𝜀2 Expected regret  = ⁄1 𝜀𝜀2



Towards an upper bound: Window-based algorithms

A common technique for non-stationary multi-armed bandits, linear bandits, 
and MDPs (e.g., WindowUCB, WeightUCB, RestartUCB,…)
• Fix a window size 𝜏𝜏 (with knowledge of 𝑉𝑉𝑇𝑇, or via “bandit-on-bandit”)
• Restart the learning problem every 𝜏𝜏 time steps

Algorithm RestartLQR(𝝉𝝉,𝝈𝝈):
• Split horizon [𝑇𝑇] into non-overlapping phases of length 𝜏𝜏
• Estimate �Θ𝑖𝑖 from phase 𝑖𝑖
• Action for 𝑡𝑡 ∈ phase (𝑖𝑖 + 1) : 𝑢𝑢𝑡𝑡 = 𝐾𝐾∗ �Θ𝑖𝑖 𝑥𝑥𝑡𝑡 + 𝜎𝜎 � 𝜂𝜂𝑡𝑡

Theorem: There exists a randomized instance such that RestartLQR with 
optimally tuned 𝜏𝜏,𝜎𝜎 has 𝐸𝐸 𝑅𝑅𝑇𝑇 = Ω 𝑉𝑉𝑇𝑇

1/3𝑇𝑇2/3 .



Towards an upper bound: Window-based algorithms

Theorem: There exists a randomized instance such that RestartLQR with 
optimally tuned 𝜏𝜏,𝜎𝜎 has 𝐸𝐸 𝑅𝑅𝑇𝑇 = Ω 𝑉𝑉𝑇𝑇

1/3𝑇𝑇2/3 .

Instance: Again extend the 1-D LQR instance of Cassel et al. (2020)

𝑎𝑎 = 1/3; define 𝜀𝜀 = 𝑉𝑉𝑇𝑇
𝑇𝑇

1/6

At time t:

• with probability 𝑉𝑉𝑇𝑇
2𝑇𝑇

: re-randomize 𝑏𝑏𝑡𝑡 = ±1

• with probability 𝑉𝑉𝑇𝑇
4𝑇𝑇

5/6
: re-randomize 𝑏𝑏𝑡𝑡 = ±𝜀𝜀

• otherwise 𝑏𝑏𝑡𝑡 = 𝑏𝑏𝑡𝑡−1

Idea: If there were only ±𝜀𝜀 changes, algorithm would pick 𝜏𝜏 = 𝒪𝒪 𝑇𝑇
𝑉𝑉𝑇𝑇

5/6

But, if a ±1 change lands inside a 𝜏𝜏-phase, we pay an Ω 𝜏𝜏 regret

This forces the algorithm to pick 𝜏𝜏 = 𝒪𝒪 𝑇𝑇
𝑉𝑉𝑇𝑇

2/3



An Adaptive restart algorithm

Intuition: Large changes in dynamics should be easy to detect

Instead of committing to a window size, we should restart when we detect a large 
change

Since we do not know how “large” the change might be, we simultaneously 
explore to detect changes at multiple scales*

Assumption: The learner/controller is given a sequence of (potentially 
suboptimal) sequentially-strong stabilizing controllers 𝐾𝐾𝑡𝑡stab .

Implies that for some 0 < 𝛾𝛾 < 1, for any interval 𝜏𝜏1, 𝜏𝜏2 :

∏𝑡𝑡=𝜏𝜏1
𝜏𝜏2 (𝐴𝐴𝑡𝑡 + 𝐵𝐵𝑡𝑡𝐾𝐾𝑡𝑡stab) ~ 𝛾𝛾𝜏𝜏2−𝜏𝜏1.

* A new algorithm for non-stationary contextual bandits. Chen et al. COLT 2019.



An Adaptive restart algorithm

Idea 1: Split the horizon into epochs
variation within epoch 2 ≈ 1/ duration of epoch

Idea 2: Since we apriori do not know the length of the epoch, we use phases 
of doubling durations
• phase 0: Play 𝑢𝑢𝑡𝑡 = 𝐾𝐾𝑡𝑡stab � 𝑥𝑥𝑡𝑡 + 𝜎𝜎0 � 𝜂𝜂𝑡𝑡
• use OLS to estimate �Θ𝑖𝑖,0, 𝐾𝐾𝑖𝑖,1 = 𝐾𝐾∗ �Θ𝑖𝑖,0
• phase 1: Play 𝑢𝑢𝑡𝑡 = 𝐾𝐾𝑖𝑖,1 � 𝑥𝑥𝑡𝑡 + 𝜎𝜎1 � 𝜂𝜂𝑡𝑡
• …

• phase 𝑗𝑗: Play 𝑢𝑢𝑡𝑡 = 𝐾𝐾𝑖𝑖,𝑗𝑗 � 𝑥𝑥𝑡𝑡 + 𝜎𝜎𝑗𝑗 � 𝜂𝜂𝑡𝑡

epoch 𝑖𝑖

phase 0 phase 1 phase 2 phase 3

𝜎𝜎𝑗𝑗2 ≈ 1/ 2𝑗𝑗

Play 𝐾𝐾𝑡𝑡stab play 𝐾𝐾𝑖𝑖,1 = 𝐾𝐾∗(�Θ𝑖𝑖,0) play 𝐾𝐾𝑖𝑖,2 = 𝐾𝐾∗(�Θ𝑖𝑖,1)

estimate �Θ𝑖𝑖,0 estimate �Θ𝑖𝑖,1 estimate �Θ𝑖𝑖,2

play 𝐾𝐾𝑖𝑖,3 = 𝐾𝐾∗(�Θ𝑖𝑖,2)

estimate �Θ𝑖𝑖,3



An Adaptive restart algorithm (contd.)

Idea 3: End the epoch at the end of phase 𝑗𝑗 if
�Θ𝑖𝑖,𝑗𝑗 − �Θ𝑖𝑖,𝑗𝑗−1 𝐹𝐹

2 ≳ �1
2𝑗𝑗

Idea 4: At each 𝑡𝑡 in phase 𝑗𝑗 begin a scale 𝑚𝑚 detection test for 𝑚𝑚 ∈ {0,1, . . , 𝑗𝑗 −
1} with probability �1 2𝑗𝑗+𝑚𝑚

• For the next 2𝑚𝑚 time steps increase the exploration noise to 𝜎𝜎𝑚𝑚
• Estimate �Θ𝑖𝑖,𝑗𝑗,𝑚𝑚

• End the epoch at the end of detection test if
�Θ𝑖𝑖,𝑗𝑗,𝑚𝑚 − �Θ𝑖𝑖,𝑗𝑗−1 𝐹𝐹

2 ≳ �1
2𝑚𝑚

epoch 𝑖𝑖

phase 0 phase 1 phase 2 phase 3

Play 𝐾𝐾𝑡𝑡stab play 𝐾𝐾𝑖𝑖,1 = 𝐾𝐾∗(�Θ𝑖𝑖,0) play 𝐾𝐾𝑖𝑖,2 = 𝐾𝐾∗(�Θ𝑖𝑖,1)

estimate �Θ𝑖𝑖,0 estimate �Θ𝑖𝑖,1 estimate �Θ𝑖𝑖,2

play 𝐾𝐾𝑖𝑖,3 = 𝐾𝐾∗(�Θ𝑖𝑖,2)

estimate �Θ𝑖𝑖,3



Proof sketch

1. It suffices to compare with ∑𝑡𝑡 𝐽𝐽∗ Θ𝑡𝑡

min
𝜋𝜋
𝐄𝐄�
𝑡𝑡=1

𝑇𝑇

𝑥𝑥𝑡𝑡𝑇𝑇Q𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡𝑇𝑇R𝑢𝑢𝑡𝑡 ≥�
𝑡𝑡

𝐽𝐽∗ Θ𝑡𝑡 − �𝒪𝒪 𝑉𝑉𝑇𝑇 + 1

2. Regret decomposition, for policy 𝐾𝐾𝑡𝑡 = 𝐾𝐾∗ �Θ𝑡𝑡

𝐄𝐄�
𝑡𝑡=1

𝑇𝑇

𝑥𝑥𝑡𝑡𝑇𝑇Q𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡𝑇𝑇R𝑢𝑢𝑡𝑡 −�
𝑡𝑡

𝐽𝐽∗ Θ𝑡𝑡 = �
𝑡𝑡

𝐄𝐄 𝐽𝐽 Θ𝑡𝑡 ,𝐾𝐾𝑡𝑡 − 𝐽𝐽∗ Θ𝑡𝑡

+ Exploration cost

+�
𝑡𝑡

𝐄𝐄 𝑥𝑥𝑡𝑡𝑇𝑇(𝑃𝑃 Θ𝑡𝑡 ,𝐾𝐾𝑡𝑡 − 𝑃𝑃 Θ𝑡𝑡−1,𝐾𝐾𝑡𝑡−1 )𝑥𝑥𝑡𝑡

≈�
𝑡𝑡

𝐄𝐄 Θ𝑡𝑡 − �Θ𝑡𝑡 𝑭𝑭
𝟐𝟐

≾ 𝑉𝑉𝑇𝑇 + (# policy changes)



Proof sketch (contd.)

3. Regret for epoch 𝑖𝑖 of duration 𝐸𝐸𝑖𝑖
Square variation: ∆𝑖𝑖2≈ �1 𝐸𝐸𝑖𝑖

Regret ≈ 𝐸𝐸𝑖𝑖 � ∆𝑖𝑖2

(∑𝑖𝑖 ∆𝑖𝑖 = 𝑉𝑉𝑇𝑇)  +  (∑𝑖𝑖 𝐸𝐸𝑖𝑖 = 𝑇𝑇)  +  Hölder’s inequality ⟹ 𝐸𝐸 𝑅𝑅𝑇𝑇 = �𝒪𝒪 𝑉𝑉𝑇𝑇
2/5𝑇𝑇3/5
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OLS estimator – stationary case

�Θ∗ = argmin
�Θ

ℒ(�Θ)

Where: ℒ �Θ = ∑𝑡𝑡 𝑥𝑥𝑡𝑡+1 − �Θ � 𝑧𝑧𝑡𝑡
2 = ∑𝑡𝑡 Θ � 𝑧𝑧𝑡𝑡 +𝑤𝑤𝑡𝑡 − �Θ � 𝑧𝑧𝑡𝑡

2

Solution: �Θ ∑𝑧𝑧𝑡𝑡𝑧𝑧𝑡𝑡𝑇𝑇 = ∑Θ𝑧𝑧𝑡𝑡𝑧𝑧𝑡𝑡𝑇𝑇 + ∑𝑤𝑤𝑡𝑡𝑧𝑧𝑡𝑡𝑇𝑇

The OLS estimator is unbiased under mild conditions.

mean variance



OLS estimator – non-stationary case

Solution: �Θ ∑𝑧𝑧𝑡𝑡𝑧𝑧𝑡𝑡𝑇𝑇 = ∑Θ𝑡𝑡𝑧𝑧𝑡𝑡𝑧𝑧𝑡𝑡𝑇𝑇 + ∑𝑤𝑤𝑡𝑡𝑧𝑧𝑡𝑡𝑇𝑇

The OLS estimator could have a large bias even if all Θ𝑡𝑡 are close

Pictorially:

mean variance

𝑧𝑧1

𝑧𝑧2
Θ1

Θ2

�Θ



OLS estimator – non-stationary case

We prove that the OLS estimator has small bias “from scratch”

Given the OLS loss function

ℒ �Θ = ∑𝑡𝑡 Θ𝑡𝑡 � 𝑧𝑧𝑡𝑡 +𝑤𝑤𝑡𝑡 − �Θ � 𝑧𝑧𝑡𝑡
2

,

fix a representative �Θ and direction 𝑣𝑣, and construct the one dimensional loss 
function

ℒ𝑣𝑣 𝜆𝜆 = ℒ �Θ + 𝜆𝜆 � 𝑣𝑣 .

Finally, we show that for enough directions 𝑣𝑣, the minimizer |𝜆𝜆𝑣𝑣∗ | is small with 
high probability ⟹ �Θ∗ is close to �Θ

Key idea: The function ℒ𝑣𝑣 𝜆𝜆 looks very different for 𝑣𝑣 lying in the space 
spanned by 𝐼𝐼𝐾𝐾 𝑥𝑥 for 𝑥𝑥 ∈ ℝ𝑛𝑛 and in its orthogonal subspace
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For non-stationary LQR

The assumption that dynamics are non-stationary but the noise covariance is 
known and stationary seems unrealistic
Q1: Learning and control of unknown non-stationary dynamics in the present of 
non-stochastic noise?

What does 𝑉𝑉𝑇𝑇 = 𝑜𝑜 𝑇𝑇 mean in practice?
Q2: With 𝑉𝑉𝑇𝑇 = 𝜀𝜀𝑇𝑇, for 𝜀𝜀 ≤ 𝜀𝜀0, 𝐄𝐄 𝑅𝑅𝑇𝑇 ~ 𝜀𝜀2/5𝑇𝑇?

Summarizing the hardness of the instance in a single number 𝑉𝑉𝑇𝑇 seems 
unsatisfactory.
Q3: An instance-optimal notion of regret? 

Q4. Model free non-stationary LQR? (Gradu et al. do this but under the 
assumption that dynamics are observed after each time step)

Q5. A sliding adaptive-window size algorithm which avoids hard restarts?



For non-stationary control more broadly..

Q6: How should we combine learning and agnostic/back-pressure type 
policies?
• Results of Neely, Huang
• See forthcoming survey/tutorial by Neil Walton and Kuang Xu

Q7: Combining noisy forecasts with learning and robust policies?

Q8: Combining NN policy approximation with non-stationarity – a meta-
Reinforcement Learning approach 
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