Abstract
We study the problem of distributed multi-task learning with shared representation, where each machine aims to learn a separate, but related, task in an unknown shared low-dimensional subspaces, i.e. when the predictor matrix has low rank. We consider a setting where each task is handled by a different machine, with samples for the task available locally on the machine, and study communication-efficient methods for exploiting the shared structure.
Publication
Technical report
PhD (2013-2018)
Jialei received his PhD in Computer Science at University of Chicago in June 2019. His advisors were Nathan Srebro and Mladen Kolar.
Associate Professor of Econometrics and Statistics
Mladen Kolar is an Associate Professor of Econometrics and Statistics at the University of Chicago Booth School of Business. His research is focused on high-dimensional statistical methods, graphical models, varying-coefficient models and data mining, driven by the need to uncover interesting and scientifically meaningful structures from observational data.