Distributed Stochastic Multi-Task Learning with Graph Regularization

Abstract

We propose methods for distributed graph-based multi-task learning that are based on weighted averaging of messages from other machines. Uniform averaging or diminishing stepsize in these methods would yield consensus (single task) learning. We show how simply skewing the averaging weights or controlling the stepsize allows learning different, but related, tasks on the different machines.

Publication
arXiv:1802.03830
Jialei Wang
Jialei Wang
PhD (2013-2018)

Jialei received his PhD in Computer Science at University of Chicago in June 2019. His advisors were Nathan Srebro and Mladen Kolar.

Mladen Kolar
Mladen Kolar
Associate Professor of Econometrics and Statistics

Mladen Kolar is an Associate Professor of Econometrics and Statistics at the University of Chicago Booth School of Business. His research is focused on high-dimensional statistical methods, graphical models, varying-coefficient models and data mining, driven by the need to uncover interesting and scientifically meaningful structures from observational data.

Related