### Abstract

We consider the problem of estimating the difference between two undirected functional graphical models with shared structures. In many applications, data are naturally regarded as a vector of random functions rather than as a vector of scalars. For example, electroencephalography (EEG) data are treated more appropriately as functions of time. In such a problem, not only can the number of functions measured per sample be large, but each function is itself an infinite dimensional object, making estimation of model parameters challenging. This is further complicated by the fact that curves are usually observed only at discrete time points. We first define a functional differential graph that captures the differences between two functional graphical models and formally characterize when the functional differential graph is well defined. We then propose a method, FuDGE, that directly estimates the functional differential graph without first estimating each individual graph. This is particularly beneficial in settings where the individual graphs are dense but the differential graph is sparse. We show that FuDGE consistently estimates the functional differential graph even in a high-dimensional setting for both fully observed and discretely observed function paths. We illustrate the finite sample properties of our method through simulation studies. We also propose a competing method, the Joint Functional Graphical Lasso, which generalizes the Joint Graphical Lasso to the functional setting. Finally, we apply our method to EEG data to uncover differences in functional brain connectivity between a group of individuals with alcohol use disorder and a control group.

Publication

*Journal of Machine Learning Research*

###### PhD student

Boxin Zhao is a PhD student in Econometrics and Statistics at University of Chicago, Booth School of Business. His research interests include probabilistic graphical models, functional data analysis and distributed learning, with a focus on developing novel methodologies with both practical applications and theoretical guarantees.

###### Post-doc (2018-2021)

Sam Wang is currently an assistant professor at Cornell University. He was a post-doc at the University of Chicago Booth School of Business advised by Mladen Kolar. His theoretical and methodological research interests are focused on causal discovery, graphical models, and high-dimensional statistical methods; his applied research interests lie in the social sciences. He completed his PhD in 2018 at the University of Washington advised by Mathias Drton and received his undergraduate degree from Rice University. Prior to embarking on his PhD studies, he worked in management consulting.

###### Associate Professor of Econometrics and Statistics

Mladen Kolar is an Associate Professor of Econometrics and Statistics at the University of Chicago Booth School of Business. His research is focused on high-dimensional statistical methods, graphical models, varying-coefficient models and data mining, driven by the need to uncover interesting and scientifically meaningful structures from observational data.