Personalized Federated Learning: A Unified Framework and Universal Optimization Techniques

Abstract

We study the optimization aspects of personalized Federated Learning (FL). We develop a universal optimization theory applicable to all convex personalized FL models in the literature. In particular, we propose a general personalized objective capable of recovering essentially any existing personalized FL objective as a special case. We design several optimization techniques to minimize the general objective, namely a tailored variant of Local SGD and variants of accelerated coordinate descent/accelerated SVRCD. We demonstrate the practicality and/or optimality of our methods both in terms of communication and local computation. Lastly, we argue about the implications of our general optimization theory when applied to solve specific personalized FL objectives.

Publication
Technical report
Boxin Zhao
Boxin Zhao
PhD student

Boxin Zhao is a PhD student in Econometrics and Statistics at University of Chicago, Booth School of Business. His research interests include probabilistic graphical models, functional data analysis and distributed learning, with a focus on developing novel methodologies with both practical applications and theoretical guarantees.

Mladen Kolar
Mladen Kolar
Associate Professor of Econometrics and Statistics

Mladen Kolar is an Associate Professor of Econometrics and Statistics at the University of Chicago Booth School of Business. His research is focused on high-dimensional statistical methods, graphical models, varying-coefficient models and data mining, driven by the need to uncover interesting and scientifically meaningful structures from observational data.

Related