### Abstract

We consider solving nonlinear optimization problems with a stochastic objective and deterministic equality constraints. We assume for the objective that its evaluation, gradient, and Hessian are inaccessible, while one can compute their stochastic estimates by, for example, subsampling. We propose a stochastic algorithm based on sequential quadratic programming (SQP) that uses a differentiable exact augmented Lagrangian as the merit function. To motivate our algorithm design, we first revisit and simplify an old SQP method Lucidi (J. Optim. Theory Appl. 67(2): 227–245, 1990) developed for solving deterministic problems, which serves as the skeleton of our stochastic algorithm. Based on the simplified deterministic algorithm, we then propose a non-adaptive SQP for dealing with stochastic objective, where the gradient and Hessian are replaced by stochastic estimates but the stepsizes are deterministic and prespecified. Finally, we incorporate a recent stochastic line search procedure Paquette and Scheinberg (SIAM J. Optim. 30(1): 349–376 2020) into the non-adaptive stochastic SQP to adaptively select the random stepsizes, which leads to an adaptive stochastic SQP. The global “almost sure” convergence for both non-adaptive and adaptive SQP methods is established. Numerical experiments on nonlinear problems in CUTEst test set demonstrate the superiority of the adaptive algorithm.

Publication

*Mathematical Programming*

###### PhD (2016-2021)

Sen Na was a PhD student in the Department of Statistics at The University of Chicago. Prior to graduate school, he obtained BS in mathematics at Nanjing University, China. His research interests lie in nonlinear and nonconvex optimization, dynamic programming, high-dimensional statistics and their interface.

###### Associate Professor of Econometrics and Statistics

Mladen Kolar is an Associate Professor of Econometrics and Statistics at the University of Chicago Booth School of Business. His research is focused on high-dimensional statistical methods, graphical models, varying-coefficient models and data mining, driven by the need to uncover interesting and scientifically meaningful structures from observational data.